On tensor products of weak mixing vector sequences and their applications to uniquely E-weak mixing C*-dynamical systems

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)

Abstract

We prove that, under certain conditions, uniform weak mixing (to zero) of the bounded sequences in Banach space implies uniform weak mixing of their tensor product. Moreover, we prove that ergodicity of tensor product of the sequences in Banach space implies their weak mixing. As applications of the results obtained, we prove that the tensor product of uniquely E-weak mixing C*-dynamical systems is also uniquely E-weak mixing.

Original languageEnglish
Pages (from-to)46-59
Number of pages14
JournalBulletin of the Australian Mathematical Society
Volume85
Issue number1
DOIs
Publication statusPublished - Feb 2012
Externally publishedYes

Keywords

  • C*-dynamical system
  • ergodicity
  • uniform weak mixing
  • uniquely E-weak mixing
  • weak mixing

ASJC Scopus subject areas

  • Mathematics(all)

Fingerprint

Dive into the research topics of 'On tensor products of weak mixing vector sequences and their applications to uniquely E-weak mixing C*-dynamical systems'. Together they form a unique fingerprint.

Cite this