ON THE GERŠGORIN DISKS OF DISTANCE MATRICES OF GRAPHS

Mustapha Aouchiche, Bilal A. Rather, Issmail El Hallaoui

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Abstract

For a simple connected graph G, let D(G), T r(G), DL (G) = T r(G) − D(G), and DQ (G) = T r(G) + D(G) be the distance matrix, the diagonal matrix of the vertex transmissions, the distance Laplacian matrix, and the distance signless Laplacian matrix of G, respectively. Atik and Panigrahi [2] suggested the study of the problem: Whether all eigenvalues, except the spectral radius, of D(G) and DQ (G) lie in the smallest Geršgorin disk? In this paper, we provide a negative answer by constructing an infinite family of counterexamples.

Original languageEnglish
Pages (from-to)709-717
Number of pages9
JournalElectronic Journal of Linear Algebra
Volume37
DOIs
Publication statusPublished - Jan 9 2021

Keywords

  • Distance Laplacian
  • Distance matrix
  • Distance signless Laplacian
  • Eigenvalues inequalities
  • Geršgorin disks

ASJC Scopus subject areas

  • Algebra and Number Theory

Fingerprint

Dive into the research topics of 'ON THE GERŠGORIN DISKS OF DISTANCE MATRICES OF GRAPHS'. Together they form a unique fingerprint.

Cite this