Abstract
In the present paper, we construct QMC (Quantum Markov Chains) associated with Open Quantum Random Walks such that the transition operator of the chain is defined by OQRW and the restriction of QMC to the commutative subalgebra coincides with the distribution ℙp of OQRW. However, we are going to look at the probability distribution as a Markov field over the Cayley tree. Such kind of consideration allows us to investigate phase transition phenomena associated for OQRW within QMC scheme. Furthermore, we first propose a new construction of QMC on trees, which is an extension of QMC considered in [10]. Using such a construction, we are able to construct QMCs on tress associated with OQRW. Our investigation leads to the detection of the phase transition phenomena within the proposed scheme. This kind of phenomena appears for the first time in this direction. Moreover, mean entropies of QMCs are calculated.
Original language | English |
---|---|
Article number | 2250003 |
Journal | Open Systems and Information Dynamics |
Volume | 29 |
Issue number | 1 |
DOIs | |
Publication status | Published - Mar 1 2022 |
Keywords
- Cayley tree
- Open quantum random walks
- disordered phase
- phase transition
- quantum Markov chain
ASJC Scopus subject areas
- Statistical and Nonlinear Physics
- Statistics and Probability
- Mathematical Physics