Abstract
A mapping between projections of C* -algebras preserving the orthogonality, is called an orthoisomorphism. We define the order-isomorphism mapping on C* -algebras, and using Dye's result, we prove in the case of commutative unital C* -algebras that the concepts; order-isomorphism and the orthoisomorphism coincide. Also, we define the equipotence relation on the projections of C(X); indeed, new concepts of finiteness are introduced. The classes of projections are represented by constructing a special diagram, we study the relation between the diagram and the topological space X. We prove that an order-isomorphism, which preserves the equipotence of projections, induces a diagram-isomorphism; also if two diagrams are isomorphic, then the C* -algebras are isomorphic.
Original language | English |
---|---|
Pages (from-to) | 523-536 |
Number of pages | 14 |
Journal | Turkish Journal of Mathematics |
Volume | 34 |
Issue number | 4 |
DOIs | |
Publication status | Published - 2010 |
Keywords
- Clopen subsets
- Commutative C* -algebras
- Infinite projections
- Projections order-isomorphism
ASJC Scopus subject areas
- Mathematics(all)