Abstract
High-rise residential buildings in dense cities, such as London, are a common response to housing shortage. The apartments in these buildings may experience different levels of thermal and visual comfort, depending on their orientation and floor level. This paper aims to develop simplified tools to predict internal temperatures and daylighting levels, and propose a tool to quickly assess overheating risk and daylight performance in London's high-rise residential buildings. Single- and double-sided apartments in a high-rise building were compared, and the impact of their floor level, glazing ratio, thermal mass, ventilation strategy and orientation was investigated. Using Integrated Environmental Solutions Virtual Environment (IES VE), temperature and daylight factor results of each design variable were used to develop early design tools to predict and assess overheating risks and daylighting levels. The results indicate that apartments that are more exposed to solar radiations, through either orientation or floor level, are more susceptible to overheat in the summer while exceeding the daylighting recommendations. Different design strategies at different levels and orientations are subsequently discussed.
Original language | English |
---|---|
Article number | 1544 |
Journal | Sustainability (Switzerland) |
Volume | 9 |
Issue number | 9 |
DOIs | |
Publication status | Published - Aug 30 2017 |
Keywords
- Assessment tool
- Daylighting
- Design tool
- Floor-level
- Glazing
- High-rise
- London
- Orientation
- Overheating
- Residential
ASJC Scopus subject areas
- Geography, Planning and Development
- Renewable Energy, Sustainability and the Environment
- Environmental Science (miscellaneous)
- Energy Engineering and Power Technology
- Management, Monitoring, Policy and Law