Oxide Derived Copper for Electrochemical Reduction of CO2 to C2+ Products

Anum Zahid, Afzal Shah, Iltaf Shah

Research output: Contribution to journalArticlepeer-review

19 Citations (Scopus)

Abstract

The electrochemical reduction of carbon dioxide (CO2) on copper electrode derived from cupric oxide (CuO), named oxide derived copper (ODCu), was studied thoroughly in the potential range of -1.0 V to -1.5 V versus RHE. The CuO nanoparticles were prepared by the hydrothermal method. The ODCu electrode was used for carbon dioxide reduction and the results revealed that this electrode is highly selective for C2+ products with enhanced current density at significantly less overpotential. This catalyst shifts the selectivity towards C2+ products with the highest Faradaic efficiency up to 58% at -0.95 V. In addition, C2 product formation at the lowest onset potential of -0.1 V is achieved with the proposed catalyst. X-ray diffraction and scanning electron microscopy revealed the reduction of CuO to Cu (111) nanoparticles during the CO2 RR· The intrinsic property of the synthesized catalyst and its surface reduction are suggested to induce sites or edges for facilitating the dimerization and coupling of intermediates to ethanol and ethylene.

Original languageEnglish
Article number1380
JournalNanomaterials
Volume12
Issue number8
DOIs
Publication statusPublished - Apr 1 2022

Keywords

  • Carbon dioxide reduction reaction (CO2RR)
  • Faradaic efficiency
  • Oxide derived copper (ODCu)
  • ¤2 products

ASJC Scopus subject areas

  • General Chemical Engineering
  • General Materials Science

Fingerprint

Dive into the research topics of 'Oxide Derived Copper for Electrochemical Reduction of CO2 to C2+ Products'. Together they form a unique fingerprint.

Cite this