TY - JOUR
T1 - Paleoclimatic variability in the southern Tethys, Egypt
T2 - Insights from the mineralogy and geochemistry of Upper Cretaceous lacustrine organic-rich deposits
AU - Fathy, Douaa
AU - Wagreich, Michael
AU - Ntaflos, Theodoros
AU - Sami, Mabrouk
N1 - Publisher Copyright:
© 2021 Elsevier Ltd
PY - 2021/10
Y1 - 2021/10
N2 - The effect of paleoclimate during global warming periods on Upper Cretaceous lacustrine deposits is not fully understood. In this study, comprehensive sedimentological, mineralogical, and geochemical data were used to unravel the past climatic changes and their influence on the accumulation of Campanian lacustrine organic-rich deposits in Egypt. Three sedimentary lithofacies associations are recorded within the uppermost part of the Quseir Formation. The laminated clay-rich mudstone lithofacies has the highest organic matter (TOC up to 1.2 wt.%). Sedimentological observations indicate that the bulk lithologic assemblage was originated in a shallow lacustrine setting. The studied samples consist of clay minerals, quartz, pyrite, carbonate, fluorapatite, and halite. The siliciclastic content reaches up to 78wt.%, whilst the carbonate content ranges from 3 to 22 wt.%. Compared to Post-Archean Australian shales (PAAS), the studied samples are significantly rich in Mg, Ca, P, Al, V, Ga, and Cr contents. The mudstone samples are characterized by high ratios (C-value, CIA, CIW, Mg/Ca, Fe/Mn, Ga/Rb) and low values (K2O/Al2O3), reflecting relatively warm and humid conditions during deposition of these sediments. The prevalence of smectite, as well as the sedimentary features, support that the lacustrine organic-rich mudstones are mainly deposited under warm seasonal climate (arid/humid). Additionally, the presence of dolomite and halite along with the Sr/Ba ratios (1.30–2.13), strongly suggest a saline water setting. The changes between aridity and humidity periods are probably the main reason for the significant variation in water chemistry, especially salinity. Therefore, the paleoclimatic variations largely controlled the depositional process during the formation of the Upper Cretaceous lacustrine organic-rich mudstones in the southern Tethys.
AB - The effect of paleoclimate during global warming periods on Upper Cretaceous lacustrine deposits is not fully understood. In this study, comprehensive sedimentological, mineralogical, and geochemical data were used to unravel the past climatic changes and their influence on the accumulation of Campanian lacustrine organic-rich deposits in Egypt. Three sedimentary lithofacies associations are recorded within the uppermost part of the Quseir Formation. The laminated clay-rich mudstone lithofacies has the highest organic matter (TOC up to 1.2 wt.%). Sedimentological observations indicate that the bulk lithologic assemblage was originated in a shallow lacustrine setting. The studied samples consist of clay minerals, quartz, pyrite, carbonate, fluorapatite, and halite. The siliciclastic content reaches up to 78wt.%, whilst the carbonate content ranges from 3 to 22 wt.%. Compared to Post-Archean Australian shales (PAAS), the studied samples are significantly rich in Mg, Ca, P, Al, V, Ga, and Cr contents. The mudstone samples are characterized by high ratios (C-value, CIA, CIW, Mg/Ca, Fe/Mn, Ga/Rb) and low values (K2O/Al2O3), reflecting relatively warm and humid conditions during deposition of these sediments. The prevalence of smectite, as well as the sedimentary features, support that the lacustrine organic-rich mudstones are mainly deposited under warm seasonal climate (arid/humid). Additionally, the presence of dolomite and halite along with the Sr/Ba ratios (1.30–2.13), strongly suggest a saline water setting. The changes between aridity and humidity periods are probably the main reason for the significant variation in water chemistry, especially salinity. Therefore, the paleoclimatic variations largely controlled the depositional process during the formation of the Upper Cretaceous lacustrine organic-rich mudstones in the southern Tethys.
KW - Clastic rocks
KW - Clay minerals
KW - Depositional environment
KW - Greenhouse climate
KW - Lithofacies
KW - Salinity
UR - http://www.scopus.com/inward/record.url?scp=85107316541&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85107316541&partnerID=8YFLogxK
U2 - 10.1016/j.cretres.2021.104880
DO - 10.1016/j.cretres.2021.104880
M3 - Article
AN - SCOPUS:85107316541
SN - 0195-6671
VL - 126
JO - Cretaceous Research
JF - Cretaceous Research
M1 - 104880
ER -