Parkin Precipitates on Mitochondria via Aggregation and Autoubiquitination

Mustafa T. Ardah, Nada Radwan, Engila Khan, Tohru Kitada, M. Emdadul Haque

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)


The loss of the E3 ligase Parkin, in a familial form of Parkinson’s disease, is thought to cause the failure of both the polyubiquitination of abnormal mitochondria and the consequent induction of mitophagy, resulting in abnormal mitochondrial accumulation. However, this has not been confirmed in patient autopsy cases or animal models. More recently, the function of Parkin as a redox molecule that directly scavenges hydrogen peroxide has attracted much attention. To determine the role of Parkin as a redox molecule in the mitochondria, we overexpressed various combinations of Parkin, along with its substrates FAF1, PINK1, and ubiquitin in cell culture systems. Here, we observed that the E3 Parkin monomer was surprisingly not recruited to abnormal mitochondria but self-aggregated with or without self-ubiquitination into the inner and outer membranes, becoming insoluble. Parkin overexpression alone generated aggregates without self-ubiquitination, but it activated autophagy. These results suggest that for damaged mitochondria, the polyubiquitination of Parkin substrates on the mitochondria is not indispensable for mitophagy.

Original languageEnglish
Article number9027
JournalInternational journal of molecular sciences
Issue number10
Publication statusPublished - May 2023


  • Parkin
  • Parkinson’s disease
  • neurodegeneration
  • ubiquitin

ASJC Scopus subject areas

  • Catalysis
  • Molecular Biology
  • Spectroscopy
  • Computer Science Applications
  • Physical and Theoretical Chemistry
  • Organic Chemistry
  • Inorganic Chemistry


Dive into the research topics of 'Parkin Precipitates on Mitochondria via Aggregation and Autoubiquitination'. Together they form a unique fingerprint.

Cite this