Past, Present and Perspective Methodology for Groundwater Modeling-Based Machine Learning Approaches

Ahmedbahaaaldin Ibrahem Ahmed Osman, Ali Najah Ahmed, Yuk Feng Huang, Pavitra Kumar, Ahmed H. Birima, Mohsen Sherif, Ahmed Sefelnasr, Abdel Azim Ebraheemand, Ahmed El-Shafie

Research output: Contribution to journalReview articlepeer-review

5 Citations (Scopus)

Abstract

Growing population and rapid urbanization are among the major causes of ground water level (GWL) depletion. Modeling GWL is considered as tough task as the GWL variation depends on various complex hydrological and meteorological variables. However, few methodologies have been proposed in literature for modeling GWL. The present research offers a summary of the most common methodologies in GWL forecasting using artificial intelligence (AI), as well as bibliographic assessments of the authors' knowledge and an overview and comparison of the findings. The characteristics and capabilities of modeling methods and the consideration of input data types and time steps have been reviewed in 40 studies published from 2010 to 2020. The reviewed studies succeeded in modeling and predicting the GWL in various regions using the methods proposed by the authors. Trial and error method in certain phases of AI modeling was helpful for testing in special applications for GWL modeling. The reviewed papers provided several partial and overall findings that may provide relevant recommendations to investigators who would like to conduct similar work in GWL modeling. In this report, a variety of new concepts for designing novel approaches and enhancing modeling efficiency are also discussed in the relevant field of analysis. Analyzing modeling methods used in all the reviewed studies it was estimated that the machine learning methods are efficient enough for modeling GWL.

Original languageEnglish
Pages (from-to)3843-3859
Number of pages17
JournalArchives of Computational Methods in Engineering
Volume29
Issue number6
DOIs
Publication statusPublished - Oct 2022

ASJC Scopus subject areas

  • Computer Science Applications
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Past, Present and Perspective Methodology for Groundwater Modeling-Based Machine Learning Approaches'. Together they form a unique fingerprint.

Cite this