Pentacyclic triterpenoids inhibit ikkβmediated activation of nf-κb pathway: In silico and in vitro evidences

Kalpesh R. Patil, Purusottam Mohapatra, Harun M. Patel, Sameer N. Goyal, Shreesh Ojha, Chanakya N. Kundu, Chandragouda R. Patil

Research output: Contribution to journalArticlepeer-review

49 Citations (Scopus)

Abstract

Pentacyclic Triterpenoids (PTs) and their analogues as well as derivatives are emerging as important drug leads for various diseases. They act through a variety of mechanisms and a majority of them inhibit the nuclear factor kappa-beta (NF-κB) signaling pathway. In this study, we examined the effects of the naturally occurring PTs on IκB kinase-β (IKKβ), which has great scientific relevance in the NF-κB signaling pathway. On virtual screening, 109 PTs were screened through the PASS (prediction of activity spectra of substances) software for prediction of NF-κB inhibitory activity followed by docking on the NEMO/IKKβ association complex (PDB: 3BRV) and testing for compliance with the softened Lipinski's Rule of Five using Schrodinger (LLC, New York, USA). Out of the projected 45 druggable PTs, Corosolic Acid (CA), Asiatic Acid (AA) and Ursolic Acid (UA) were assayed for IKKβ kinase activity in the cell free medium. The UA exhibited a potent IKKβ inhibitory effect on the hotspot kinase assay with IC50 of 69 μM. Whereas, CA at 50 μM concentration markedly reduced the NF-κB luciferase activity and phospho-IKKβ protein expressions. The PTs tested, attenuated the expression of the NF-κB cascade proteins in the LPS-stimulated RAW 264.7 cells, prevented the phosphorylation of the IKKα/β and blocked the activation of the Interferon-gamma (IFN-γ). The results suggest that the IKKβ inhibition is the major mechanism of the PTs-induced NF-κB inhibition. PASS predictions along with in-silico docking against the NEMO/IKKβ can be successfully applied in the selection of the prospective NF-κB inhibitory downregulators of IKKβ phosphorylation.

Original languageEnglish
Article numbere0125709
JournalPLoS ONE
Volume10
Issue number5
DOIs
Publication statusPublished - May 4 2015

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)
  • General

Fingerprint

Dive into the research topics of 'Pentacyclic triterpenoids inhibit ikkβmediated activation of nf-κb pathway: In silico and in vitro evidences'. Together they form a unique fingerprint.

Cite this