TY - JOUR
T1 - Plum fruit development occurs via gibberellin-sensitive and -insensitive DELLA repressors
AU - El-Sharkawy, Islam
AU - Sherif, Sherif
AU - Abdulla, Mahboob
AU - Jayasankar, Subramanian
N1 - Publisher Copyright:
© 2017 El-Sharkawy et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2017/1
Y1 - 2017/1
N2 - Fruit growth depends on highly coordinated hormonal activities. The phytohormone gibberellin (GA) promotes growth by triggering degradation of the growth-repressing DELLA proteins; however, the extent to which such proteins contribute to GA-mediated fruit development remains to be clarified. Three new plum genes encoding DELLA proteins, PslGAI, PslRGL and PslRGA were isolated and functionally characterized. Analysis of expression profile during fruit development suggested that PslDELLA are transcriptionally regulated during flower and fruit ontogeny with potential positive regulation by GA and ethylene, depending on organ and developmental stage. PslGAI and PslRGL deduced proteins contain all domains present in typical DELLA proteins. However, PslRGA exhibited a degenerated DELLA domain and subsequently lacks in GID1-DELLA interaction property. PslDELLA-overexpression in WT Arabidopsis caused dramatic disruption in overall growth including root length, stem elongation, plant architecture, flower structure, fertility, and considerable retardation in development due to dramatic distortion in GA-metabolic pathway. GA treatment enhanced PslGAI/PslRGL interaction with PslGID1 receptors, causing protein destabilization and relief of growth-restraining effect. By contrast, PslRGA protein was not degraded by GA due to its inability to interact with PslGID1. Relative to other PslDELLA-mutants, PslRGA-plants displayed stronger constitutive repressive growth that was irreversible by GA application. The present results describe additional complexities in GA-signalling during plum fruit development, which may be particularly important to optimize successful reproductive growth.
AB - Fruit growth depends on highly coordinated hormonal activities. The phytohormone gibberellin (GA) promotes growth by triggering degradation of the growth-repressing DELLA proteins; however, the extent to which such proteins contribute to GA-mediated fruit development remains to be clarified. Three new plum genes encoding DELLA proteins, PslGAI, PslRGL and PslRGA were isolated and functionally characterized. Analysis of expression profile during fruit development suggested that PslDELLA are transcriptionally regulated during flower and fruit ontogeny with potential positive regulation by GA and ethylene, depending on organ and developmental stage. PslGAI and PslRGL deduced proteins contain all domains present in typical DELLA proteins. However, PslRGA exhibited a degenerated DELLA domain and subsequently lacks in GID1-DELLA interaction property. PslDELLA-overexpression in WT Arabidopsis caused dramatic disruption in overall growth including root length, stem elongation, plant architecture, flower structure, fertility, and considerable retardation in development due to dramatic distortion in GA-metabolic pathway. GA treatment enhanced PslGAI/PslRGL interaction with PslGID1 receptors, causing protein destabilization and relief of growth-restraining effect. By contrast, PslRGA protein was not degraded by GA due to its inability to interact with PslGID1. Relative to other PslDELLA-mutants, PslRGA-plants displayed stronger constitutive repressive growth that was irreversible by GA application. The present results describe additional complexities in GA-signalling during plum fruit development, which may be particularly important to optimize successful reproductive growth.
UR - http://www.scopus.com/inward/record.url?scp=85009063677&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85009063677&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0169440
DO - 10.1371/journal.pone.0169440
M3 - Article
C2 - 28076366
AN - SCOPUS:85009063677
SN - 1932-6203
VL - 12
JO - PLoS ONE
JF - PLoS ONE
IS - 1
M1 - e0169440
ER -