TY - JOUR
T1 - Quantum chemical investigation of formation of polychlorodibenzo-p-dioxins and dibenzofurans from oxidation and pyrolysis of 2-chlorophenol
AU - Altarawneh, Mohammednoor
AU - Dlugogorski, Bogdan Z.
AU - Kennedy, Eric M.
AU - Mackie, John C.
PY - 2007/4/5
Y1 - 2007/4/5
N2 - Density functional theory (DFT) calculations have been used to obtain thermochemical parameters for formation of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/PCDF) from the oxidation of 2-chlorophenol. Formation mechanisms of PCDD through radical-radical coupling have been investigated in detail. The sequence of 2-chlorophenoxy radical coupling has been studied. The formation of chlorinated bis keto dimers which results from cross coupling of 2-chlorophenoxy at the ortho carbon bearing hydrogen (a known direct route for PCDF formation) passes through a tight transition structure whose barrier is 9.4 kcal/mol (0 K). Three routes for the formation of the most abundant PCDD/PCDF species (viz., 4,6-dichlorodibenzofuran, 4,6-DCDF, and 1-monochlorodibenzo-p- dioxin, 1-MCDD) in oxidation and pyrolysis of 2-chlorophenol are discussed. In the case of 4,6-DCDF, formation through H or HO + keto-keto ⇄ H 2 or H2O + keto-keto ⇄ H2 or H 2O + enol-keto ⇄ H2 or H2O + 4,6-DCDF + HO is shown to be the preferred route. The other two routes proceed via closed shell processes (keto-keto ⇄ enol-keto ⇄ enol-enol ⇄ H 2O + 4,6-DCDF) and (keto-keto ⇄ enol-keto ⇄ (H-,OH-) 4,6-DCDF ⇄ H2O + 4,6-DCDF). Results indicate that 1-MCDD should be the favored product in 2-chlorophenol pyrolysis in agreement with experimental findings. According to our results, tautomerization (inter-ring hydrogen transfer) and intra-annular displacement of HCl would not be competitive with paths deriving from H abstraction from the phenolic oxygen and the benzene ring followed by displacement of Cl in the formation of dibenzo-p-dioxin (DD) and 1-MCDD. The results presented here will assist in construction of detailed kinetic models to account for the formation of PCDD/PCDF from chlorophenols.
AB - Density functional theory (DFT) calculations have been used to obtain thermochemical parameters for formation of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/PCDF) from the oxidation of 2-chlorophenol. Formation mechanisms of PCDD through radical-radical coupling have been investigated in detail. The sequence of 2-chlorophenoxy radical coupling has been studied. The formation of chlorinated bis keto dimers which results from cross coupling of 2-chlorophenoxy at the ortho carbon bearing hydrogen (a known direct route for PCDF formation) passes through a tight transition structure whose barrier is 9.4 kcal/mol (0 K). Three routes for the formation of the most abundant PCDD/PCDF species (viz., 4,6-dichlorodibenzofuran, 4,6-DCDF, and 1-monochlorodibenzo-p- dioxin, 1-MCDD) in oxidation and pyrolysis of 2-chlorophenol are discussed. In the case of 4,6-DCDF, formation through H or HO + keto-keto ⇄ H 2 or H2O + keto-keto ⇄ H2 or H 2O + enol-keto ⇄ H2 or H2O + 4,6-DCDF + HO is shown to be the preferred route. The other two routes proceed via closed shell processes (keto-keto ⇄ enol-keto ⇄ enol-enol ⇄ H 2O + 4,6-DCDF) and (keto-keto ⇄ enol-keto ⇄ (H-,OH-) 4,6-DCDF ⇄ H2O + 4,6-DCDF). Results indicate that 1-MCDD should be the favored product in 2-chlorophenol pyrolysis in agreement with experimental findings. According to our results, tautomerization (inter-ring hydrogen transfer) and intra-annular displacement of HCl would not be competitive with paths deriving from H abstraction from the phenolic oxygen and the benzene ring followed by displacement of Cl in the formation of dibenzo-p-dioxin (DD) and 1-MCDD. The results presented here will assist in construction of detailed kinetic models to account for the formation of PCDD/PCDF from chlorophenols.
UR - http://www.scopus.com/inward/record.url?scp=34247548333&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=34247548333&partnerID=8YFLogxK
U2 - 10.1021/jp065558t
DO - 10.1021/jp065558t
M3 - Article
C2 - 17388333
AN - SCOPUS:34247548333
SN - 1089-5639
VL - 111
SP - 2563
EP - 2573
JO - Journal of Physical Chemistry A
JF - Journal of Physical Chemistry A
IS - 13
ER -