Quantum reflection of dark solitons scattered by reflectionless potential barrier and position-dependent dispersion

L. Al Sakkaf, T. Uthayakumar, U. Al Khawaja

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

We investigate theoretically and numerically quantum reflection of dark solitons propagating through an external reflectionless potential barrier or in the presence of a position-dependent dispersion. We confirm that quantum reflection occurs in both cases with a sharp transition between complete reflection and complete transmission at a critical initial soliton speed. The critical speed is calculated numerically and analytically in terms of the soliton and potential parameters. Analytical expressions for the critical speed were derived using the exact trapped mode, time-independent, and time-dependent variational calculations. It is then shown that resonant scattering occurs at a critical speed, where the energy of the incoming soliton is resonant with that of a trapped mode. Reasonable agreement between analytical and numerical values for the critical speed is obtained as long as a periodic multisoliton ejection regime is avoided.

Original languageEnglish
Article number064207
JournalPhysical Review E
Volume105
Issue number6
DOIs
Publication statusPublished - Jun 2022

ASJC Scopus subject areas

  • Statistical and Nonlinear Physics
  • Statistics and Probability
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Quantum reflection of dark solitons scattered by reflectionless potential barrier and position-dependent dispersion'. Together they form a unique fingerprint.

Cite this