Reactions of products from thermal degradation of PVC with nanoclusters of Α-Fe2O3 (hematite)

Oday H. Ahmed, Mohammednoor Altarawneh, Zhong Tao Jiang, Mohammad Al-Harahsheh, Bogdan Z. Dlugogorski

Research output: Contribution to journalArticlepeer-review

25 Citations (Scopus)


Polyvinyl chloride (PVC) plastics constitute a large fraction of buildings, packaging and electronic devices, whereas, the annual emission electric arc furnace dust (EAFD) from steel manufacturing operations has recently peaked at nearly 6 Mt. Co-pyrolysis of PVC with EAFD currently represents a focal abatement technology for both categories of pollutants. However, despite of several experimental investigations; the mechanisms underlying interaction between EAFD and PVC remain largely speculative. Herein, we examine theoretically reactions of major products from thermal degradation of PVC with nanoclusters of iron (III) oxide, α-Fe2O3 (hematite) as a representative model for the various metal oxides in EAFD. The facile nature for the H-Cl bond fission over hematite is in line with experimental findings, pointing out to formation of iron chlorides from pyrolysis of Fe2O3-PVC mixtures. Interaction of selected chlorinated C1-C3 cuts with the hematite structure preferentially proceeds via a dissociative adsorption pathway. Results from this study shall be instrumental to understand, on a precise molecular basis, fixation of halogens on transitional metal oxides; a viable thermal recycling approach for polymeric materials laden with halogenated constituents.

Original languageEnglish
Pages (from-to)396-405
Number of pages10
JournalChemical Engineering Journal
Publication statusPublished - 2017
Externally publishedYes


  • Density functional theory
  • Electric arc furnace dust
  • HCl
  • Polyvinyl chloride
  • Reaction mechanism

ASJC Scopus subject areas

  • General Chemistry
  • Environmental Chemistry
  • General Chemical Engineering
  • Industrial and Manufacturing Engineering


Dive into the research topics of 'Reactions of products from thermal degradation of PVC with nanoclusters of Α-Fe2O3 (hematite)'. Together they form a unique fingerprint.

Cite this