Abstract
Polyvinyl chloride (PVC) plastics constitute a large fraction of buildings, packaging and electronic devices, whereas, the annual emission electric arc furnace dust (EAFD) from steel manufacturing operations has recently peaked at nearly 6 Mt. Co-pyrolysis of PVC with EAFD currently represents a focal abatement technology for both categories of pollutants. However, despite of several experimental investigations; the mechanisms underlying interaction between EAFD and PVC remain largely speculative. Herein, we examine theoretically reactions of major products from thermal degradation of PVC with nanoclusters of iron (III) oxide, α-Fe2O3 (hematite) as a representative model for the various metal oxides in EAFD. The facile nature for the H-Cl bond fission over hematite is in line with experimental findings, pointing out to formation of iron chlorides from pyrolysis of Fe2O3-PVC mixtures. Interaction of selected chlorinated C1-C3 cuts with the hematite structure preferentially proceeds via a dissociative adsorption pathway. Results from this study shall be instrumental to understand, on a precise molecular basis, fixation of halogens on transitional metal oxides; a viable thermal recycling approach for polymeric materials laden with halogenated constituents.
Original language | English |
---|---|
Pages (from-to) | 396-405 |
Number of pages | 10 |
Journal | Chemical Engineering Journal |
Volume | 323 |
DOIs | |
Publication status | Published - 2017 |
Externally published | Yes |
Keywords
- Density functional theory
- Electric arc furnace dust
- HCl
- Polyvinyl chloride
- Reaction mechanism
ASJC Scopus subject areas
- General Chemistry
- Environmental Chemistry
- General Chemical Engineering
- Industrial and Manufacturing Engineering