Realistic and Efficient Face Swapping: A Unified Approach with Diffusion Models

Sanoojan Baliah, Qinliang Lin, Shengcai Liao, Xiaodan Liang, Muhammad Haris Khan

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Citation (Scopus)

Abstract

Despite promising progress in face swapping task, realistic swapped images remain elusive, often marred by artifacts, particularly in scenarios involving high pose variation, color differences, and occlusion. To address these issues, we propose a novel approach that better harnesses diffusion models for face-swapping by making following core contributions. (a) We propose to reframe the face-swapping task as a self-supervised, train-time inpainting problem, enhancing the identity transfer while blending with the target image. (b) We introduce a multi-step De-noising Diffusion Implicit Model (DDIM) sampling during training, reinforcing identity and perceptual similarities. (c) Third, we introduce CLIP feature disentanglement to extract pose, expression, and lighting information from the target image, improving fidelity. (d) Further, we introduce a mask shuffling technique during inpainting training, which allows us to create a so-called universal model for swapping, with an additional feature of head swapping. Ours can swap hair and even accessories, beyond traditional face swapping. Unlike prior works reliant on multiple off-the-shelf models, ours is a relatively unified approach and so it is resilient to errors in other off-the-shelf models. Extensive experiments on FFHQ and CelebA datasets validate the efficacy and robustness of our approach, show-casing high-fidelity, realistic face-swapping with minimal inference time. Our code is available at REFace.

Original languageEnglish
Title of host publicationProceedings - 2025 IEEE Winter Conference on Applications of Computer Vision, WACV 2025
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1062-1071
Number of pages10
ISBN (Electronic)9798331510831
DOIs
Publication statusPublished - 2025
Event2025 IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2025 - Tucson, United States
Duration: Feb 28 2025Mar 4 2025

Publication series

NameProceedings - 2025 IEEE Winter Conference on Applications of Computer Vision, WACV 2025

Conference

Conference2025 IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2025
Country/TerritoryUnited States
CityTucson
Period2/28/253/4/25

Keywords

  • deepfake
  • diffusion
  • face swapping
  • inpainting

ASJC Scopus subject areas

  • Artificial Intelligence
  • Computer Science Applications
  • Computer Vision and Pattern Recognition
  • Human-Computer Interaction
  • Modelling and Simulation
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Realistic and Efficient Face Swapping: A Unified Approach with Diffusion Models'. Together they form a unique fingerprint.

Cite this