TY - JOUR
T1 - Reduction in the amplitude of shortening and Ca2+ transient by phlorizin and quercetin-3-O-glucoside in ventricular myocytes from streptozotocin-induced diabetic rats
AU - Hamouda, N. N.
AU - Qureshi, M. A.
AU - Alkaabi, J. M.
AU - Oz, M.
AU - Howarth, F. C.
N1 - Publisher Copyright:
© 2016 Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
PY - 2016
Y1 - 2016
N2 - Diabetes mellitus is the leading cause of cardiovascular morbidity and mortality. Phlorizin (PHLOR) and quercetin-3-O-glucoside (QUER-3-G) are two natural compounds reported to have antidiabetic properties by inhibiting sodium/glucose transporters. Their effects on ventricular myocyte shortening and intracellular Ca2+ in streptozotocin (STZ)-induced diabetic rats were investigated. Video edge detection and fluorescence photometry were used to measure ventricular myocyte shortening and intracellular Ca2+, respectively. Blood glucose in STZ rats was 4-fold higher (469.64±22.23 mg/dl, n=14) than in Controls (104.06±3.36 mg/dl, n=16). The amplitude of shortening was reduced by PHLOR in STZ (84.76±2.91 %, n=20) and Control (83.72±2.65 %, n=23) myocytes, and by QUER-3-G in STZ (79.12±2.28 %, n=20) and Control (76.69±1.92 %, n=30) myocytes. The amplitude of intracellular Ca2+ was also reduced by PHLOR in STZ (82.37±3.16 %, n=16) and Control (73.94±5.22 %, n=21) myocytes, and by QUER-3-G in STZ (73.62±5.83 %, n=18) and Control (78.32±3.54 %, n=41) myocytes. Myofilament sensitivity to Ca2+ was not significantly altered by PHLOR; however, it was reduced by QUER-3-G modestly in STZ myocytes and significantly in Controls. PHLOR and QUER-3-G did not significantly alter sarcoplasmic reticulum Ca2+ in STZ or Control myocytes. Altered mechanisms of Ca2+ transport partly underlie PHLOR and QUER-3-G negative inotropic effects in ventricular myocytes from STZ and Control rats.
AB - Diabetes mellitus is the leading cause of cardiovascular morbidity and mortality. Phlorizin (PHLOR) and quercetin-3-O-glucoside (QUER-3-G) are two natural compounds reported to have antidiabetic properties by inhibiting sodium/glucose transporters. Their effects on ventricular myocyte shortening and intracellular Ca2+ in streptozotocin (STZ)-induced diabetic rats were investigated. Video edge detection and fluorescence photometry were used to measure ventricular myocyte shortening and intracellular Ca2+, respectively. Blood glucose in STZ rats was 4-fold higher (469.64±22.23 mg/dl, n=14) than in Controls (104.06±3.36 mg/dl, n=16). The amplitude of shortening was reduced by PHLOR in STZ (84.76±2.91 %, n=20) and Control (83.72±2.65 %, n=23) myocytes, and by QUER-3-G in STZ (79.12±2.28 %, n=20) and Control (76.69±1.92 %, n=30) myocytes. The amplitude of intracellular Ca2+ was also reduced by PHLOR in STZ (82.37±3.16 %, n=16) and Control (73.94±5.22 %, n=21) myocytes, and by QUER-3-G in STZ (73.62±5.83 %, n=18) and Control (78.32±3.54 %, n=41) myocytes. Myofilament sensitivity to Ca2+ was not significantly altered by PHLOR; however, it was reduced by QUER-3-G modestly in STZ myocytes and significantly in Controls. PHLOR and QUER-3-G did not significantly alter sarcoplasmic reticulum Ca2+ in STZ or Control myocytes. Altered mechanisms of Ca2+ transport partly underlie PHLOR and QUER-3-G negative inotropic effects in ventricular myocytes from STZ and Control rats.
KW - Diabetes mellitus
KW - Phlorizin
KW - Quercetin-3-O-glucoside
KW - SGLT inhibitors
KW - Streptozotocin-induced diabetic rats
KW - Ventricular myocytes
UR - http://www.scopus.com/inward/record.url?scp=84975517289&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84975517289&partnerID=8YFLogxK
U2 - 10.33549/physiolres.933045
DO - 10.33549/physiolres.933045
M3 - Article
C2 - 26447513
AN - SCOPUS:84975517289
SN - 0862-8408
VL - 65
SP - 239
EP - 250
JO - Physiological Research
JF - Physiological Research
IS - 2
ER -