Relation between Conventional and Starch-Assisted ASP Injection and Impact of Crystallinity on Flood Formation

Hasanain A. Al-Jaber, Agus Arsad, Sulalit Bandyopadhyay, Mohd Zaidi Jaafar, Muhammad Tahir, Mustafa Jawad Nuhma, Abdulmunem R. Abdulmunem, Mohammad Yasin Abdulfatah, Hajar Alias

Research output: Contribution to journalArticlepeer-review

Abstract

Alkaline–surfactant–polymer (ASP) flooding, a recognized method for oil recovery, encounters limited use due to its expense. In addition, ASP’s best composition and injection sequence still remains uncertain today. This study explores conventional ASP flooding using PT SPR Langgak’s special surfactants, simulating Langgak oilfield conditions in Sumatra, Indonesia. By comparing the outcomes of this flooding technique with that of starch-assisted ASP performed in another study, the benefits of adding starch nanoparticles to flooding are evident. Nano-starch ASP increased oil recovery by 18.37%, 10.76%, and 10.37% for the three configurations investigated in this study. Water flooding preceded ASP flooding, and flooding operations were carried out at 60 °C. This study employed sodium hydroxide (NaOH), sodium carbonate (Na2CO3), and specialized surfactants from PT SPR. The adopted polymer is solely hydrolyzed polyacrylamide (HPAM) at 2000 ppm. Starch nanoparticles underwent comprehensive characterization and focused more on charge stability. Purple yam nanoparticles (PYNPs) exhibited remarkable stability at −36.33 mV, unlike cassava starch nanoparticles (CSNPs’) at −10.68 mV and HPAM’s at −27.13 mV. Surface properties affect interactions with fluids and rocks. Crystallinity, a crucial characterization, was assessed using Origin software 2019b. CSNPs showed 24.15% crystallinity, surpassing PYNPs’ 20.68%. Higher crystallinity benefits CSNPs’ thermal stability. The amorphous behavior found in PYNPs makes them less suitable if applied in harsh reservoirs. This research correlated with prior findings, reinforcing starch nanoparticles’ role in enhancing oil recovery. In summary, this study highlighted conventional ASP flooding using HPAM as the sole polymer and compared it with three formations that used two starch nanoparticles included with HPAM, assessing their impact on charge stability, crystallinity, and recovery rate to emphasize their importance in the oil recovery industry. Starch nanoparticles’ benefits and limitations guided further investigation in this study.

Original languageEnglish
Article number6685
JournalMolecules
Volume28
Issue number18
DOIs
Publication statusPublished - Sept 2023

Keywords

  • cassava starch nanoparticles
  • characterization of biopolymers
  • conventional ASP flooding
  • improved ASP formation
  • nanoparticles derived from purple yam

ASJC Scopus subject areas

  • Analytical Chemistry
  • Chemistry (miscellaneous)
  • Molecular Medicine
  • Pharmaceutical Science
  • Drug Discovery
  • Physical and Theoretical Chemistry
  • Organic Chemistry

Fingerprint

Dive into the research topics of 'Relation between Conventional and Starch-Assisted ASP Injection and Impact of Crystallinity on Flood Formation'. Together they form a unique fingerprint.

Cite this