TY - GEN
T1 - Relative motion modeling and control in a perturbed orbit
AU - Okasha, Mohamed
AU - Newman, Brett
PY - 2011
Y1 - 2011
N2 - In this paper, the dynamics of the relative motion problem in a perturbed orbital environment are exploited based on Gauss' and Cowell's variational equations. The inertial coordinate frame and relative coordinate frame (Hill frame) are studied to describe the relative motion. A linear high fidelity model is developed to describe the relative motion. This model takes into account primary gravitational and atmospheric drag perturbations. In addition, this model is used in the design of a control, guidance, and navigation system of a chaser vehicle to approach towards and to depart form a target vehicle in proximity operations. Relative navigation uses an extended Kalman filter based on this relative model to estimate the relative position and velocity of the chaser vehicle with respect to the target vehicle. This filter uses the range and angle measurements of the target relative to the chaser from a simulated LIDAR system. The corresponding measurement models, process noise matrix, and other filter parameters are provided. Numerical simulations are performed to assess the precision of this model with respect to the full nonlinear model. The analyses include the navigation errors and trajectory dispersions.
AB - In this paper, the dynamics of the relative motion problem in a perturbed orbital environment are exploited based on Gauss' and Cowell's variational equations. The inertial coordinate frame and relative coordinate frame (Hill frame) are studied to describe the relative motion. A linear high fidelity model is developed to describe the relative motion. This model takes into account primary gravitational and atmospheric drag perturbations. In addition, this model is used in the design of a control, guidance, and navigation system of a chaser vehicle to approach towards and to depart form a target vehicle in proximity operations. Relative navigation uses an extended Kalman filter based on this relative model to estimate the relative position and velocity of the chaser vehicle with respect to the target vehicle. This filter uses the range and angle measurements of the target relative to the chaser from a simulated LIDAR system. The corresponding measurement models, process noise matrix, and other filter parameters are provided. Numerical simulations are performed to assess the precision of this model with respect to the full nonlinear model. The analyses include the navigation errors and trajectory dispersions.
UR - http://www.scopus.com/inward/record.url?scp=80053431155&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=80053431155&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:80053431155
SN - 9780877035695
T3 - Advances in the Astronautical Sciences
SP - 1565
EP - 1582
BT - Spaceflight Mechanics 2011 - Advances in the Astronautical Sciences
T2 - 21st AAS/AIAA Space Flight Mechanics Meeting
Y2 - 13 February 2011 through 17 February 2011
ER -