Reliability of Machine Learning in Eliminating Data Redundancy of Radiomics and Reflecting Pathophysiology in COVID-19 Pneumonia: Impact of CT Reconstruction Kernels on Accuracy

Yauhen Statsenko, Tetiana Habuza, Tatsiana Talako, Tetiana Kurbatova, Gillian Lylian Simiyu, Darya Smetanina, Juana Sido, Dana Sharif Qandil, Sarah Meribout, Juri G. Gelovani, Klaus Friedrich Neidl, Taleb M. Almansoori, Fatmah Al Zahmi, Tom Loney, Anthony Bedson, Nerissa Naidoo, Alireza Dehdashtian, Milos Ljubisavljevic, Jamal Al Koteesh, Karuna M. Das

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Fingerprint

Dive into the research topics of 'Reliability of Machine Learning in Eliminating Data Redundancy of Radiomics and Reflecting Pathophysiology in COVID-19 Pneumonia: Impact of CT Reconstruction Kernels on Accuracy'. Together they form a unique fingerprint.

Medicine and Dentistry

Pharmacology, Toxicology and Pharmaceutical Science

Nursing and Health Professions

Keyphrases