S-thiolation of individual human neutrophil proteins including actin by stimulation of the respiratory burst: Evidence against a role for glutathione disulfide

Yuh Cherng Chai, Syed S. Ashraf, Kazuhito Rokutan, Richard B. Johnston, James A. Thomas

Research output: Contribution to journalArticlepeer-review

208 Citations (Scopus)

Abstract

Protein S-thiolation, a reversible modification of protein sulfhydryls resulting in formation of mixed-disulfides, was studied in human neutrophils stimulated with phorbol diester to produce superoxide anion. Rapid S-thiolation of several proteins was examined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Glutathione was identified as the primary protein-bound thiol by HPLC chromatography, contributing considerably more than 85% of the total. Minor amounts of homocysteine and/or cysteine were also detected as protein-bound thiols. During the first 30 min after stimulation, 10% of the cellular glutathione became protein bound (2 nmol/mg of protein). There was no increase in glutathione disulfide suggesting that S-thiolation of the proteins did not occur by thiol/disulfide exchange. Approximately 10 mol% of one heavily modified band (29 kDa) was S-thiolated after 30 min. A second major band of 42 kDa was identified as actin. It contained 1/10th of the total protein-bound glutathione and approximately 5 mol% was S-thiolated after 30 min. These experiments identify a subset of S-thiolated neutrophil proteins, including actin, whose modification is related to the phorbol diester stimulation of superoxide anion production in human neutrophils. Ten percent of the total glutathione pool became protein-bound without an appreciable change in non-bound concentration of glutathione or glutathione disulfide. These results suggest that glutathione was synthesized during initial phases of the respiratory burst, compensating for the amount of glutathione that became protein-bound. Since there was no significant increase in glutathione disulfide, it was probably not important in the observed protein S-thiolation.

Original languageEnglish
Pages (from-to)273-281
Number of pages9
JournalArchives of Biochemistry and Biophysics
Volume310
Issue number1
DOIs
Publication statusPublished - Apr 1994
Externally publishedYes

ASJC Scopus subject areas

  • Biophysics
  • Biochemistry
  • Molecular Biology

Fingerprint

Dive into the research topics of 'S-thiolation of individual human neutrophil proteins including actin by stimulation of the respiratory burst: Evidence against a role for glutathione disulfide'. Together they form a unique fingerprint.

Cite this