TY - JOUR
T1 - S-thiolation of individual human neutrophil proteins including actin by stimulation of the respiratory burst
T2 - Evidence against a role for glutathione disulfide
AU - Chai, Yuh Cherng
AU - Ashraf, Syed S.
AU - Rokutan, Kazuhito
AU - Johnston, Richard B.
AU - Thomas, James A.
PY - 1994/4
Y1 - 1994/4
N2 - Protein S-thiolation, a reversible modification of protein sulfhydryls resulting in formation of mixed-disulfides, was studied in human neutrophils stimulated with phorbol diester to produce superoxide anion. Rapid S-thiolation of several proteins was examined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Glutathione was identified as the primary protein-bound thiol by HPLC chromatography, contributing considerably more than 85% of the total. Minor amounts of homocysteine and/or cysteine were also detected as protein-bound thiols. During the first 30 min after stimulation, 10% of the cellular glutathione became protein bound (2 nmol/mg of protein). There was no increase in glutathione disulfide suggesting that S-thiolation of the proteins did not occur by thiol/disulfide exchange. Approximately 10 mol% of one heavily modified band (29 kDa) was S-thiolated after 30 min. A second major band of 42 kDa was identified as actin. It contained 1/10th of the total protein-bound glutathione and approximately 5 mol% was S-thiolated after 30 min. These experiments identify a subset of S-thiolated neutrophil proteins, including actin, whose modification is related to the phorbol diester stimulation of superoxide anion production in human neutrophils. Ten percent of the total glutathione pool became protein-bound without an appreciable change in non-bound concentration of glutathione or glutathione disulfide. These results suggest that glutathione was synthesized during initial phases of the respiratory burst, compensating for the amount of glutathione that became protein-bound. Since there was no significant increase in glutathione disulfide, it was probably not important in the observed protein S-thiolation.
AB - Protein S-thiolation, a reversible modification of protein sulfhydryls resulting in formation of mixed-disulfides, was studied in human neutrophils stimulated with phorbol diester to produce superoxide anion. Rapid S-thiolation of several proteins was examined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Glutathione was identified as the primary protein-bound thiol by HPLC chromatography, contributing considerably more than 85% of the total. Minor amounts of homocysteine and/or cysteine were also detected as protein-bound thiols. During the first 30 min after stimulation, 10% of the cellular glutathione became protein bound (2 nmol/mg of protein). There was no increase in glutathione disulfide suggesting that S-thiolation of the proteins did not occur by thiol/disulfide exchange. Approximately 10 mol% of one heavily modified band (29 kDa) was S-thiolated after 30 min. A second major band of 42 kDa was identified as actin. It contained 1/10th of the total protein-bound glutathione and approximately 5 mol% was S-thiolated after 30 min. These experiments identify a subset of S-thiolated neutrophil proteins, including actin, whose modification is related to the phorbol diester stimulation of superoxide anion production in human neutrophils. Ten percent of the total glutathione pool became protein-bound without an appreciable change in non-bound concentration of glutathione or glutathione disulfide. These results suggest that glutathione was synthesized during initial phases of the respiratory burst, compensating for the amount of glutathione that became protein-bound. Since there was no significant increase in glutathione disulfide, it was probably not important in the observed protein S-thiolation.
UR - http://www.scopus.com/inward/record.url?scp=0028298361&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0028298361&partnerID=8YFLogxK
U2 - 10.1006/abbi.1994.1167
DO - 10.1006/abbi.1994.1167
M3 - Article
C2 - 8161216
AN - SCOPUS:0028298361
SN - 0003-9861
VL - 310
SP - 273
EP - 281
JO - Archives of Biochemistry and Biophysics
JF - Archives of Biochemistry and Biophysics
IS - 1
ER -