TY - JOUR
T1 - Seed polyamines metabolism induced by seed priming with spermidine and 5-aminolevulinic acid for chilling tolerance improvement in rice (Oryza sativa L.) seedlings
AU - Sheteiwy, Mohamed
AU - Shen, Hangqi
AU - Xu, Jungui
AU - Guan, Yajing
AU - Song, Wenjian
AU - Hu, Jin
N1 - Publisher Copyright:
© 2017 Elsevier B.V.
PY - 2017/5/1
Y1 - 2017/5/1
N2 - Polyamines (PAs) have been demonstrated to be involved in plant in response to abiotic stresses including chilling stress. The present study was designed to investigate the effects of seed priming with 5 mM of spermidine (Spd) and 8.5 mM of 5-Aminolevulinic acid (ALA) on seed polyamines metabolism associated with the improvement of chilling tolerance in two rice cultivars, Zhu Liang You 06 (ZY) and Qian You No.1 (QY). Germination percentage, seedling growth and seedling vigor index was decreased under chilling stress, but this physiological parameters was improved by Spd and ALA priming in both studied cultivars as compared with unprimed seeds. As well, total phenolics, flavonoids and glycine-betaine were improved by priming treatment. Contrarily, significant decrease of α-amylase activity, soluble sugars and soluble protein contents of both cultivars was observed in chilling stressed plants as compared with normal growth condition (25 °C). However, priming with Spd and ALA significantly increased α-amylase activity, soluble sugars and soluble protein contents with more prominent increase in QY cultivar. Results showed that chilling stress significantly improved superoxide dismutase (SOD), peroxidase (POD), ascorbate peroxidase (APX) and glutathione peroxidase (GPX), and further enhancement was observed by Spd and ALA-primed seeds. Spd and putrescine (Put) were decreased under chilling stress, while a reverse tendency was observed in case of spermine (Spm) content. The enzymes involved in the PAs biosynthesis, arginine decarboxylase (ADC), ornithine decarboxylase (ODC) and S-adenosylmethionine decarboxylase (SAMDC) was improved by priming treatment. The relative expressions of genes encoding enzymes involved in PAs biosynthesis increased by Spd and ALA priming. Additionally, priming treatment improved leaf cell and grain structure as compared with the unprimed seeds.
AB - Polyamines (PAs) have been demonstrated to be involved in plant in response to abiotic stresses including chilling stress. The present study was designed to investigate the effects of seed priming with 5 mM of spermidine (Spd) and 8.5 mM of 5-Aminolevulinic acid (ALA) on seed polyamines metabolism associated with the improvement of chilling tolerance in two rice cultivars, Zhu Liang You 06 (ZY) and Qian You No.1 (QY). Germination percentage, seedling growth and seedling vigor index was decreased under chilling stress, but this physiological parameters was improved by Spd and ALA priming in both studied cultivars as compared with unprimed seeds. As well, total phenolics, flavonoids and glycine-betaine were improved by priming treatment. Contrarily, significant decrease of α-amylase activity, soluble sugars and soluble protein contents of both cultivars was observed in chilling stressed plants as compared with normal growth condition (25 °C). However, priming with Spd and ALA significantly increased α-amylase activity, soluble sugars and soluble protein contents with more prominent increase in QY cultivar. Results showed that chilling stress significantly improved superoxide dismutase (SOD), peroxidase (POD), ascorbate peroxidase (APX) and glutathione peroxidase (GPX), and further enhancement was observed by Spd and ALA-primed seeds. Spd and putrescine (Put) were decreased under chilling stress, while a reverse tendency was observed in case of spermine (Spm) content. The enzymes involved in the PAs biosynthesis, arginine decarboxylase (ADC), ornithine decarboxylase (ODC) and S-adenosylmethionine decarboxylase (SAMDC) was improved by priming treatment. The relative expressions of genes encoding enzymes involved in PAs biosynthesis increased by Spd and ALA priming. Additionally, priming treatment improved leaf cell and grain structure as compared with the unprimed seeds.
KW - ALA
KW - Antioxidant enzymes
KW - Chilling stress
KW - Gene expression
KW - Oryza sativa
KW - Polyamines
KW - Priming
KW - Spd
UR - http://www.scopus.com/inward/record.url?scp=85012107931&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85012107931&partnerID=8YFLogxK
U2 - 10.1016/j.envexpbot.2017.02.007
DO - 10.1016/j.envexpbot.2017.02.007
M3 - Article
AN - SCOPUS:85012107931
SN - 0098-8472
VL - 137
SP - 58
EP - 72
JO - Environmental and Experimental Botany
JF - Environmental and Experimental Botany
ER -