Selective One-Pot Multicomponent Synthesis of N-Substituted 2,3,5-Functionalized 3-Cyanopyrroles via the Reaction between α-Hydroxyketones, Oxoacetonitriles, and Primary Amines

Mengxin Xia, Ziad Moussa, Zaher M.A. Judeh

Research output: Contribution to journalArticlepeer-review

Abstract

A one-step, three-component reaction between α-hydroxyketones, oxoacetonitriles, and primary amines gives N-substituted 2,3,5-functionalized 3-cyanopyrroles with complete selectivity in up to 90% isolated yields. The reaction worked on a wide substrate scope under mild reaction conditions (AcOH as a catalyst, EtOH, 70 °C, 3 h). The reaction proceeded with very high atom efficiency as water is the only molecule lost during the reaction. The practicality of the reaction was demonstrated on a large gram scale. The structures of the 3-cyanopyrroles were confirmed by single-crystal X-ray diffraction and NMR; this work provides a general and practical entry to pyrrole scaffolds suitably decorated for the synthesis of various bioactive pyrroles in a concise manner.

Original languageEnglish
Article number5285
JournalMolecules
Volume27
Issue number16
DOIs
Publication statusPublished - Aug 2022

Keywords

  • carbohydrates
  • one-pot reactions
  • pyrroles
  • sustainable synthesis
  • three-component reactions

ASJC Scopus subject areas

  • Analytical Chemistry
  • Chemistry (miscellaneous)
  • Molecular Medicine
  • Pharmaceutical Science
  • Drug Discovery
  • Physical and Theoretical Chemistry
  • Organic Chemistry

Fingerprint

Dive into the research topics of 'Selective One-Pot Multicomponent Synthesis of N-Substituted 2,3,5-Functionalized 3-Cyanopyrroles via the Reaction between α-Hydroxyketones, Oxoacetonitriles, and Primary Amines'. Together they form a unique fingerprint.

Cite this