Several machine learning techniques comparison for the prediction of the uniaxial compressive strength of carbonate rocks

Research output: Contribution to journalArticlepeer-review

Abstract

In engineering practices, it is critical and necessary to either measure or estimate the uniaxial compressive strength (UCS) of the rock. Measuring the UCS of rocks requires comprehensive studies in the field and in the laboratory for the rock block sampling, coring, and testing. These studies are time-consuming, expensive and go through difficult processes. Alternatively, the UCS can either be estimated by empirical relationships or predictive models with various measured mechanical and physical parameters of the rocks. Previous studies used different methods to predict UCS, including least squares regression techniques (MLR), adaptive neuro-fuzzy inference system (ANFIS), Sequential artificial neuron networks (SANN), etc. This study is intended to estimate the UCS of the carbonate rock by using a simple, measured Schmidt Hammer (SHVC) test on core sample and a unit weight (γn) of carbonate rock. Principal components regression (PCR), MLR, SANN, and ANFIS are employed to predict the UCS. We are not aware of any study compared the performances of these methods for the prediction of the UCS values. Based on the root mean square error, mean absolute error and R2, the Sequential artificial neural network has a slight advantage against the other three models.

Original languageEnglish
Article number20969
JournalScientific reports
Volume12
Issue number1
DOIs
Publication statusPublished - Dec 2022

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Several machine learning techniques comparison for the prediction of the uniaxial compressive strength of carbonate rocks'. Together they form a unique fingerprint.

Cite this