Abstract
Wearing a safety helmet is important in construction and manufacturing industrial activities to avoid unpleasant situations. This safety compliance can be ensured by developing an automatic helmet detection system using various computer vision and deep learning approaches. Developing a deep-learning-based helmet detection model usually requires an enormous amount of training data. However, there are very few public safety helmet datasets available in the literature, in which most of them are not entirely labeled, and the labeled one contains fewer classes. This paper presents the Safety HELmet dataset with 5K images (SHEL5K) dataset, an enhanced version of the SHD dataset. The proposed dataset consists of six completely labeled classes (helmet, head, head with helmet, person with helmet, person without helmet, and face). The proposed dataset was tested on multiple state-of-the-art object detection models, i.e., YOLOv3 (YOLOv3, YOLOv3-tiny, and YOLOv3-SPP), YOLOv4 (YOLOv4 and YOLOv4pacsp-x-mish), YOLOv5-P5 (YOLOv5s, YOLOv5m, and YOLOv5x), the Faster Region-based Convolutional Neural Network (Faster-RCNN) with the Inception V2 architecture, and YOLOR. The experimental results from the various models on the proposed dataset were compared and showed improvement in the mean Average Precision (mAP). The SHEL5K dataset had an advantage over other safety helmet datasets as it contains fewer images with better labels and more classes, making helmet detection more accurate.
Original language | English |
---|---|
Article number | 2315 |
Journal | Sensors |
Volume | 22 |
Issue number | 6 |
DOIs | |
Publication status | Published - Mar 1 2022 |
Keywords
- Benchmark dataset
- Object detection
- SHEL5K
- Safety helmet
- YOLOR
- YOLOv3
- YOLOv4 YOLOv5
ASJC Scopus subject areas
- Analytical Chemistry
- Information Systems
- Atomic and Molecular Physics, and Optics
- Biochemistry
- Instrumentation
- Electrical and Electronic Engineering