Skin-Former: Mobile-Friendly Transformer for Skin Lesion Diagnosis

Mustaqeem Khan, Jamil Ahmad, Abdulmotaleb El Saddik, Wail Gueaieb

Research output: Chapter in Book/Report/Conference proceedingConference contribution

4 Citations (Scopus)

Abstract

The outbreak of infectious skin diseases quickly becomes a significant public health concern due to their rapid spread. Therefore, early detection and diagnosis of skin infections through lesion analysis via publicly accessible AI-powered tools are crucial for effective treatment and management. Recent attempts at optimizing Vision Transformers (ViTs) for efficient applications on mobile devices have enabled them to perform complex computer vision tasks. While ViT and its variants have lower latency or more parameters than lightweight CNN models, they remain substantially more complicated and capable in terms of the representational capacity of visual information. Lower latency and memory footprint are crucial for deployment on resource-limited consumer devices like smartphones or tablets. In this study, we use efficient pre-Trained transformer models to accurately capture coarse-grained and fine-grained features from various skin lesions. We propose an efficient hybrid transformer architecture, 'Skin-Former' that is low latency and parameter efficient and can capture fine-grained and discriminative color and texture features of skin lesions. The evaluation results on three publicly available datasets reveal that the Skin-Former model achieves higher accuracy with lower computational cost than several State-of-The-Art (SoTA) models.

Original languageEnglish
Title of host publication2024 IEEE International Conference on Consumer Electronics, ICCE 2024
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9798350324136
DOIs
Publication statusPublished - 2024
Externally publishedYes
Event2024 IEEE International Conference on Consumer Electronics, ICCE 2024 - Las Vegas, United States
Duration: Jan 6 2024Jan 8 2024

Publication series

NameDigest of Technical Papers - IEEE International Conference on Consumer Electronics
ISSN (Print)0747-668X
ISSN (Electronic)2159-1423

Conference

Conference2024 IEEE International Conference on Consumer Electronics, ICCE 2024
Country/TerritoryUnited States
CityLas Vegas
Period1/6/241/8/24

Keywords

  • Healthcare
  • Medical Imaging
  • Mobile Application
  • Skin Lesion
  • Skin-Former

ASJC Scopus subject areas

  • Industrial and Manufacturing Engineering
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Skin-Former: Mobile-Friendly Transformer for Skin Lesion Diagnosis'. Together they form a unique fingerprint.

Cite this