Sombor index and eigenvalues of comaximal graphs of commutative rings

Bilal Ahmad Rather, Muhammed Imran, S. Pirzada

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

The comaximal graph Σ(R) of a commutative ring R is a simple graph with vertex set R and two distinct vertices u and v of Σ(R) are adjacent if and only if uR + vR = R. In this paper, we find the sharp bounds for the Sombor index for comaximal graphs of integer modulo ring ℤn and give the corresponding extremal graphs. Also, we find the Sombor eigenvalues and the bounds for the Sombor energy of comaximal graphs of ℤn.

Original languageEnglish
Article number2450115
JournalJournal of Algebra and its Applications
DOIs
Publication statusAccepted/In press - 2023

Keywords

  • Adjacency matrix
  • eigenvalues, integers
  • Sombor index
  • Sombor matrix, comaximal graphs

ASJC Scopus subject areas

  • Algebra and Number Theory
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Sombor index and eigenvalues of comaximal graphs of commutative rings'. Together they form a unique fingerprint.

Cite this