TY - GEN
T1 - Stability Derivative Identification Using Adaptive Robust Extended Kalman Filter for Multirotor Unmanned Aerial Vehicle (M-UAV)
AU - Rosli, Danial
AU - Sulaeman, Erwin
AU - Legowo, Ari
AU - Ghaffar, Alia Farhana Abdul
N1 - Publisher Copyright:
© 2022, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
PY - 2022
Y1 - 2022
N2 - The invention of Unmanned Aerial Vehicle (UAV) in the early 1900 for military purposes and UAV applications in commercial purposes afterwards in the early 2000 accelerate its research in many engineering fields. Multirotor UAV such as quadrotor is usually unstable without a flight controller. Consequently, a proper and accurate model of the UAV dynamics is essential for its system stability. System identification allows the researchers to create an accurate parameter to the mathematical model of a dynamic system based on measured data. This work emphasizes in designing a robust and adaptive filter to develop an accurate mathematical model based on Newton-Euler method which includes aerodynamic drag and moment which are necessary in determining the correct model prediction. The focus of the present work is mainly on Kalman filter development for parameter estimation. While Kalman filter is only efficient in linear problem, an extended version of the filter itself deals with the nonlinear problem in which most real problem is actually nonlinear. This work investigates the performance of the extended version of the Kalman filter relative to parameter estimation. The performance of the filters are evaluated based on their estimation with the actual recorded flight data and presented based on data overlapping using Root Mean Square Error (RMSE). Ardupilot APM is used to acquire the actual flight test data and MATLAB is utilized to carry out the state estimation. To evaluate the performances of the filters, Goodness of Fit (GOF) approach was used. It is found that the GOF index of the present approach is 0.853 which is 25% higher than that of the Robust Extended Kalman Filter approach for the present flight test result.
AB - The invention of Unmanned Aerial Vehicle (UAV) in the early 1900 for military purposes and UAV applications in commercial purposes afterwards in the early 2000 accelerate its research in many engineering fields. Multirotor UAV such as quadrotor is usually unstable without a flight controller. Consequently, a proper and accurate model of the UAV dynamics is essential for its system stability. System identification allows the researchers to create an accurate parameter to the mathematical model of a dynamic system based on measured data. This work emphasizes in designing a robust and adaptive filter to develop an accurate mathematical model based on Newton-Euler method which includes aerodynamic drag and moment which are necessary in determining the correct model prediction. The focus of the present work is mainly on Kalman filter development for parameter estimation. While Kalman filter is only efficient in linear problem, an extended version of the filter itself deals with the nonlinear problem in which most real problem is actually nonlinear. This work investigates the performance of the extended version of the Kalman filter relative to parameter estimation. The performance of the filters are evaluated based on their estimation with the actual recorded flight data and presented based on data overlapping using Root Mean Square Error (RMSE). Ardupilot APM is used to acquire the actual flight test data and MATLAB is utilized to carry out the state estimation. To evaluate the performances of the filters, Goodness of Fit (GOF) approach was used. It is found that the GOF index of the present approach is 0.853 which is 25% higher than that of the Robust Extended Kalman Filter approach for the present flight test result.
KW - Kalman filter
KW - Multirotor UAV
KW - System identification
UR - http://www.scopus.com/inward/record.url?scp=85112518640&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85112518640&partnerID=8YFLogxK
U2 - 10.1007/978-981-33-4597-3_36
DO - 10.1007/978-981-33-4597-3_36
M3 - Conference contribution
AN - SCOPUS:85112518640
SN - 9789813345966
T3 - Lecture Notes in Electrical Engineering
SP - 391
EP - 401
BT - Recent Trends in Mechatronics Towards Industry 4.0 - Selected Articles from iM3F 2020
A2 - Ab. Nasir, Ahmad Fakhri
A2 - Ibrahim, Ahmad Najmuddin
A2 - Ishak, Ismayuzri
A2 - Mat Yahya, Nafrizuan
A2 - Zakaria, Muhammad Aizzat
A2 - P. P. Abdul Majeed, Anwar
PB - Springer Science and Business Media Deutschland GmbH
T2 - Innovative Manufacturing, Mechatronics and Materials Forum, iM3F 2020
Y2 - 6 August 2020 through 6 August 2020
ER -