TY - JOUR
T1 - Study on Regio- and Diastereoselectivity of the 1,3-Dipolar Cycloaddition Reaction of Azomethine Ylide with 2-(Benzo[d]thiazol-2-yl)-3-(aryl)acrylonitrile
T2 - Synthesis, Spectroscopic, and Computational Approach
AU - Hussein, Essam M.
AU - Moussa, Ziad
AU - Al-Fahemi, Jabir H.
AU - Al-Rooqi, Munirah M.
AU - Obaid, Rami J.
AU - Malik, M. Shaheer
AU - Abd-El-Aziz, Alaa S.
AU - Ahmed, Saleh A.
N1 - Publisher Copyright:
© 2024 The Authors. Published by American Chemical Society.
PY - 2024/6/4
Y1 - 2024/6/4
N2 - An unprecedented and efficient three-component 1,3-dipolar cycloaddition reaction using (E)-2-(benzo[d]thiazol-2-yl)-3-(aryl)acrylonitriles 4a-g and an in situ generated azomethine ylide 3 from isatin and N-methylglycine is described. The reaction exhibits exclusive regioselectivity, resulting in the formation of 3′-(benzo[d]thiazol-2-yl)-1′-methyl-2-oxo-4′-(aryl)spiro[indoline-3,2′-pyrrolidine]-3′-carbonitriles regioisomers through exo/endo approaches. The diastereoselectivity of the reaction is highly dependent on the substitution pattern of the phenyl ring in dipolarophiles 4a-g, leading to the formation of exo-/endo-cycloadducts in varying ratios. To understand the stereoselectivity, the transition state structures were optimized using the TS guess geometry with the QST3-based method. The reaction mechanism and regioselectivity were elucidated by evaluating global and local electrophilicity and nucleophilicity descriptors at the B3LYP/cc-pVTZ level of theory, along with considerations based on the HSAB principle. The analysis of global electron density transfer (GEDT) showed that the reactions are polar and electron density fluxes from azomethine ylide 3 toward dipolarophile 4a-g. It was found from the molecular electrostatic potential map (MESP) that at the more favorable transition state, approach of reactants locates the oppositely charged regions over each other resulting in attractive forces between the two fragments. The computational results are consistent with the experimental observations, confirming that the reactions proceed through an asynchronous one-step mechanism.
AB - An unprecedented and efficient three-component 1,3-dipolar cycloaddition reaction using (E)-2-(benzo[d]thiazol-2-yl)-3-(aryl)acrylonitriles 4a-g and an in situ generated azomethine ylide 3 from isatin and N-methylglycine is described. The reaction exhibits exclusive regioselectivity, resulting in the formation of 3′-(benzo[d]thiazol-2-yl)-1′-methyl-2-oxo-4′-(aryl)spiro[indoline-3,2′-pyrrolidine]-3′-carbonitriles regioisomers through exo/endo approaches. The diastereoselectivity of the reaction is highly dependent on the substitution pattern of the phenyl ring in dipolarophiles 4a-g, leading to the formation of exo-/endo-cycloadducts in varying ratios. To understand the stereoselectivity, the transition state structures were optimized using the TS guess geometry with the QST3-based method. The reaction mechanism and regioselectivity were elucidated by evaluating global and local electrophilicity and nucleophilicity descriptors at the B3LYP/cc-pVTZ level of theory, along with considerations based on the HSAB principle. The analysis of global electron density transfer (GEDT) showed that the reactions are polar and electron density fluxes from azomethine ylide 3 toward dipolarophile 4a-g. It was found from the molecular electrostatic potential map (MESP) that at the more favorable transition state, approach of reactants locates the oppositely charged regions over each other resulting in attractive forces between the two fragments. The computational results are consistent with the experimental observations, confirming that the reactions proceed through an asynchronous one-step mechanism.
UR - http://www.scopus.com/inward/record.url?scp=85194152194&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85194152194&partnerID=8YFLogxK
U2 - 10.1021/acsomega.4c01552
DO - 10.1021/acsomega.4c01552
M3 - Article
AN - SCOPUS:85194152194
SN - 2470-1343
VL - 9
SP - 23802
EP - 23821
JO - ACS Omega
JF - ACS Omega
IS - 22
ER -