Synthesis of 1,3-dioleoyl-2-arachidonoylglycerol-rich structured lipids by lipase-catalyzed acidolysis of microbial oil from Mortierella alpina

Sherif M. Abed, Xiaoqiang Zou, Abdelmoneim H. Ali, Qingzhe Jin, Xingguo Wang

Research output: Contribution to journalArticlepeer-review

41 Citations (Scopus)

Abstract

Microbial oils (MOs) have gained widespread attention due to their functional lipids and health promoting properties. In this study, 1,3-dioleoyl-2-arachidonoylglycerol-rich structured lipids (SLs) were produced from MO and oleic acid (OA) via solvent-free acidolysis catalyzed by Lipozyme RM IM. Under the optimal conditions, the content of unsaturated fatty acids (UFAs) increased from 60.63 to 84.00%, while the saturated fatty acids (SFAs) content decreased from 39.37 to 16.00% at sn-1,3 positions in SLs. Compared with MO, arachidonic acid (ARA) content at the sn-2 position of SLs accounted for 49.71%, whereas OA was predominantly located at sn-1,3 positions (47.05%). Meanwhile, the most abundant triacylglycerol (TAG) species in SLs were (18:1-20:4-18:1), (20:4-20:4-18:1), (18:1-18:2-18:1), (18:1-18:2-18:0) and (24:0-20:4-18:1) with a relative content of 18.79%, 11.94%, 6.07%, 5.75% and 4.84%, respectively. Such novel SLs with improved functional properties enriched with UFAs are highly desirable and have the potential to be used in infant formula.

Original languageEnglish
Pages (from-to)448-456
Number of pages9
JournalBioresource Technology
Volume243
DOIs
Publication statusPublished - 2017
Externally publishedYes

Keywords

  • Arachidonic acid
  • Biocatalysis
  • Microbial oil
  • Polyunsaturated fatty acids
  • Structured lipids

ASJC Scopus subject areas

  • Bioengineering
  • Environmental Engineering
  • Renewable Energy, Sustainability and the Environment
  • Waste Management and Disposal

Fingerprint

Dive into the research topics of 'Synthesis of 1,3-dioleoyl-2-arachidonoylglycerol-rich structured lipids by lipase-catalyzed acidolysis of microbial oil from Mortierella alpina'. Together they form a unique fingerprint.

Cite this