Abstract
Microbial oils (MOs) have gained widespread attention due to their functional lipids and health promoting properties. In this study, 1,3-dioleoyl-2-arachidonoylglycerol-rich structured lipids (SLs) were produced from MO and oleic acid (OA) via solvent-free acidolysis catalyzed by Lipozyme RM IM. Under the optimal conditions, the content of unsaturated fatty acids (UFAs) increased from 60.63 to 84.00%, while the saturated fatty acids (SFAs) content decreased from 39.37 to 16.00% at sn-1,3 positions in SLs. Compared with MO, arachidonic acid (ARA) content at the sn-2 position of SLs accounted for 49.71%, whereas OA was predominantly located at sn-1,3 positions (47.05%). Meanwhile, the most abundant triacylglycerol (TAG) species in SLs were (18:1-20:4-18:1), (20:4-20:4-18:1), (18:1-18:2-18:1), (18:1-18:2-18:0) and (24:0-20:4-18:1) with a relative content of 18.79%, 11.94%, 6.07%, 5.75% and 4.84%, respectively. Such novel SLs with improved functional properties enriched with UFAs are highly desirable and have the potential to be used in infant formula.
Original language | English |
---|---|
Pages (from-to) | 448-456 |
Number of pages | 9 |
Journal | Bioresource Technology |
Volume | 243 |
DOIs | |
Publication status | Published - 2017 |
Externally published | Yes |
Keywords
- Arachidonic acid
- Biocatalysis
- Microbial oil
- Polyunsaturated fatty acids
- Structured lipids
ASJC Scopus subject areas
- Bioengineering
- Environmental Engineering
- Renewable Energy, Sustainability and the Environment
- Waste Management and Disposal