Temperature control of a bench-scale batch polymerization reactor for polystyrene production

Nayef Mohamed Ghasem, Suhairi Abdul Sata, Mohamed Azlan Hussain

Research output: Contribution to journalArticlepeer-review

21 Citations (Scopus)


Batch polymerization reactors commonly use optimal temperature control as the strategic operation parameter. This strategy allows for better operability and a more economic process. The main objective of the batch polymerization reactor control is to obtain acceptable product quality. Direct measurement of polymer quality is rarely achievable, which makes the online control of the reactor difficult. Temperature is the most controllable operational variable in the polymer reactor, which is seen to have a direct effect on the polymer properties. Temperature is chosen as the set point by using either the isothermal temperature or optimal temperature trajectory. Online control of the optimal temperature profile of a bench-scale batch polymerization reactor was experimentally investigated in this study. The temperature trajectory was used as the target for controllers to follow. The time-profile temperature was obtained with the objective of obtaining the desired conversion and number-average chain length within the minimum time. Two advanced controls of fuzzy logic control and generic model control were applied to the polymer reactor. A comparison of the controllers reveals that both performed better than conventional controllers.

Original languageEnglish
Pages (from-to)1193-1202
Number of pages10
JournalChemical Engineering and Technology
Issue number9
Publication statusPublished - Sept 2007


  • Batch reactors
  • Fuzzy logic
  • Polymerization
  • Polystyrene

ASJC Scopus subject areas

  • General Chemistry
  • General Chemical Engineering
  • Industrial and Manufacturing Engineering


Dive into the research topics of 'Temperature control of a bench-scale batch polymerization reactor for polystyrene production'. Together they form a unique fingerprint.

Cite this