The Birth of Binary Direct-collapse Black Holes

Muhammad A. Latif, Sadegh Khochfar, Daniel Whalen

Research output: Contribution to journalArticlepeer-review

25 Citations (Scopus)


Supermassive primordial stars forming during catastrophic baryon collapse in atomically cooling halos at z ∼ 15-20 may be the origin of the first quasars in the universe. However, no simulation to date has followed the evolution of these halos at resolutions that are high enough or for times that are long enough to determine if collapse actually produces supermassive stars (SMSs). Here we report new cosmological simulations of baryon collapse in atomically cooled halos for times that are long enough for SMSs to form and die as direct-collapse black holes (DCBHs). We find that the high infall rates required to build up such stars persist until the end of their lives and could fuel the rapid growth of their BHs thereafter. Our simulations also demonstrate that binary and even small multiples of SMSs can form in low-spin and high-spin halos, respectively. This discovery raises the exciting possibility of detecting gravitational waves from DCBH mergers with LISA and tidal disruption events in the near-infrared with the James Webb Space Telescope and ground-based telescopes in the coming decade.

Original languageEnglish
Article numberL4
JournalAstrophysical Journal Letters
Issue number1
Publication statusPublished - Mar 20 2020

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science


Dive into the research topics of 'The Birth of Binary Direct-collapse Black Holes'. Together they form a unique fingerprint.

Cite this