TY - JOUR
T1 - The effect of oxide acidity on HMF etherification
AU - Luo, Jing
AU - Yu, Jingye
AU - Gorte, Raymond J.
AU - Mahmoud, Eyas
AU - Vlachos, Dionisios G.
AU - Smith, Michael A.
PY - 2014/9
Y1 - 2014/9
N2 - The liquid-phase (69 bar) reaction of 5-hydroxymethylfurfural (HMF) with 2-propanol for production of furanyl ethers was studied at 413 and 453 K over a series of oxide catalysts, including γ-Al2O3, ZrO2, TiO2, Al2O3/SBA-15, ZrO 2/SBA-15, TiO2/SBA-15, H-BEA, and Sn-BEA. The acidity of each of the catalysts was first characterized for Brønsted sites using TPD-TGA of 2-propanamine and for Lewis sites using TPD-TGA of 1-propanol. Catalysts with strong Brønsted acidity (H-BEA and Al2O 3/SBA-15) formed 5-[(1-methylethoxy)methyl]furfural with high selectivities, while materials with Lewis acidity (γ-Al2O 3, ZrO2, TiO2, and Sn-BEA) or weak Brønsted acidity (ZrO2/SBA-15 and TiO2/SBA-15) were active for transfer hydrogenation from the alcohol to HMF to produce 2,5-bis(hydroxymethyl)furan, with subsequent reactions to the mono- or di-ethers. Each of the catalysts was stable under the flow-reactor conditions but the selectivities varied with the particular oxide being investigated.
AB - The liquid-phase (69 bar) reaction of 5-hydroxymethylfurfural (HMF) with 2-propanol for production of furanyl ethers was studied at 413 and 453 K over a series of oxide catalysts, including γ-Al2O3, ZrO2, TiO2, Al2O3/SBA-15, ZrO 2/SBA-15, TiO2/SBA-15, H-BEA, and Sn-BEA. The acidity of each of the catalysts was first characterized for Brønsted sites using TPD-TGA of 2-propanamine and for Lewis sites using TPD-TGA of 1-propanol. Catalysts with strong Brønsted acidity (H-BEA and Al2O 3/SBA-15) formed 5-[(1-methylethoxy)methyl]furfural with high selectivities, while materials with Lewis acidity (γ-Al2O 3, ZrO2, TiO2, and Sn-BEA) or weak Brønsted acidity (ZrO2/SBA-15 and TiO2/SBA-15) were active for transfer hydrogenation from the alcohol to HMF to produce 2,5-bis(hydroxymethyl)furan, with subsequent reactions to the mono- or di-ethers. Each of the catalysts was stable under the flow-reactor conditions but the selectivities varied with the particular oxide being investigated.
UR - http://www.scopus.com/inward/record.url?scp=84905717395&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84905717395&partnerID=8YFLogxK
U2 - 10.1039/c4cy00563e
DO - 10.1039/c4cy00563e
M3 - Article
AN - SCOPUS:84905717395
SN - 2044-4753
VL - 4
SP - 3074
EP - 3081
JO - Catalysis Science and Technology
JF - Catalysis Science and Technology
IS - 9
ER -