TY - JOUR
T1 - The effects of denaturation in the displacement chromatographic behaviour of proteins
AU - Hossain, M. M.
AU - Do, D. D.
N1 - Funding Information:
Support from the ARC National Research Fellowship Scheme and from the Research Excellence Grant Scheme of the University of Queensland is gratefully acknowledged.
PY - 1992/9
Y1 - 1992/9
N2 - The denaturation of proteins is characterized by an equilibrium between a native and a partially denatured protein, which is then irreversibly denatured to an inactive form. A comprehensive rate equation model has been developed for multicomponent displacement chromatography incorporating: (i) denaturation kinetics; (ii) intraparticle diffusion; (iii) film mass transfer transfer; (iv) finite adsorption rate; (v) axial dispersion in the mobile phase. The effects of equilibrium constant, rate constant of denaturation, particle size, velocity and column length were investigated. The simulation results show that the denaturation reaction influences the shape of the chromatograms considerably, especially in cases where fast equilibration between native and partially denatured proteins occurs and where the rate constant of denaturation is very high. The chromatograms also suggest the use of smaller particle size, slow velocity and shorter column length for higher productivity of desired proteins and lower concentration of inactive protein.
AB - The denaturation of proteins is characterized by an equilibrium between a native and a partially denatured protein, which is then irreversibly denatured to an inactive form. A comprehensive rate equation model has been developed for multicomponent displacement chromatography incorporating: (i) denaturation kinetics; (ii) intraparticle diffusion; (iii) film mass transfer transfer; (iv) finite adsorption rate; (v) axial dispersion in the mobile phase. The effects of equilibrium constant, rate constant of denaturation, particle size, velocity and column length were investigated. The simulation results show that the denaturation reaction influences the shape of the chromatograms considerably, especially in cases where fast equilibration between native and partially denatured proteins occurs and where the rate constant of denaturation is very high. The chromatograms also suggest the use of smaller particle size, slow velocity and shorter column length for higher productivity of desired proteins and lower concentration of inactive protein.
UR - http://www.scopus.com/inward/record.url?scp=0026915151&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0026915151&partnerID=8YFLogxK
U2 - 10.1016/0300-9467(92)80055-F
DO - 10.1016/0300-9467(92)80055-F
M3 - Article
AN - SCOPUS:0026915151
SN - 0300-9467
VL - 49
SP - B29-B39
JO - Chemical Engineering Journal
JF - Chemical Engineering Journal
IS - 3
ER -