The effects of denaturation in the displacement chromatographic behaviour of proteins

M. M. Hossain, D. D. Do

Research output: Contribution to journalArticlepeer-review

10 Citations (Scopus)


The denaturation of proteins is characterized by an equilibrium between a native and a partially denatured protein, which is then irreversibly denatured to an inactive form. A comprehensive rate equation model has been developed for multicomponent displacement chromatography incorporating: (i) denaturation kinetics; (ii) intraparticle diffusion; (iii) film mass transfer transfer; (iv) finite adsorption rate; (v) axial dispersion in the mobile phase. The effects of equilibrium constant, rate constant of denaturation, particle size, velocity and column length were investigated. The simulation results show that the denaturation reaction influences the shape of the chromatograms considerably, especially in cases where fast equilibration between native and partially denatured proteins occurs and where the rate constant of denaturation is very high. The chromatograms also suggest the use of smaller particle size, slow velocity and shorter column length for higher productivity of desired proteins and lower concentration of inactive protein.

Original languageEnglish
Pages (from-to)B29-B39
JournalThe Chemical Engineering Journal
Issue number3
Publication statusPublished - Sept 1992
Externally publishedYes

ASJC Scopus subject areas

  • General Engineering


Dive into the research topics of 'The effects of denaturation in the displacement chromatographic behaviour of proteins'. Together they form a unique fingerprint.

Cite this