TY - JOUR
T1 - The self-inhibitory nature of metabolic networks and its alleviation through compartmentalization
AU - Alam, Mohammad Tauqeer
AU - Olin-Sandoval, Viridiana
AU - Stincone, Anna
AU - Keller, Markus A.
AU - Zelezniak, Aleksej
AU - Luisi, Ben F.
AU - Ralser, Markus
N1 - Publisher Copyright:
© The Author(s) 2017.
PY - 2017/7/10
Y1 - 2017/7/10
N2 - Metabolites can inhibit the enzymes that generate them. To explore the general nature of metabolic self-inhibition, we surveyed enzymological data accrued from a century of experimentation and generated a genome-scale enzyme-inhibition network. Enzyme inhibition is often driven by essential metabolites, affects the majority of biochemical processes, and is executed by a structured network whose topological organization is reflecting chemical similarities that exist between metabolites. Most inhibitory interactions are competitive, emerge in the close neighbourhood of the inhibited enzymes, and result from structural similarities between substrate and inhibitors. Structural constraints also explain one-third of allosteric inhibitors, a finding rationalized by crystallographic analysis of allosterically inhibited L-lactate dehydrogenase. Our findings suggest that the primary cause of metabolic enzyme inhibition is not the evolution of regulatory metabolite-enzyme interactions, but a finite structural diversity prevalent within the metabolome. In eukaryotes, compartmentalization minimizes inevitable enzyme inhibition and alleviates constraints that self-inhibition places on metabolism.
AB - Metabolites can inhibit the enzymes that generate them. To explore the general nature of metabolic self-inhibition, we surveyed enzymological data accrued from a century of experimentation and generated a genome-scale enzyme-inhibition network. Enzyme inhibition is often driven by essential metabolites, affects the majority of biochemical processes, and is executed by a structured network whose topological organization is reflecting chemical similarities that exist between metabolites. Most inhibitory interactions are competitive, emerge in the close neighbourhood of the inhibited enzymes, and result from structural similarities between substrate and inhibitors. Structural constraints also explain one-third of allosteric inhibitors, a finding rationalized by crystallographic analysis of allosterically inhibited L-lactate dehydrogenase. Our findings suggest that the primary cause of metabolic enzyme inhibition is not the evolution of regulatory metabolite-enzyme interactions, but a finite structural diversity prevalent within the metabolome. In eukaryotes, compartmentalization minimizes inevitable enzyme inhibition and alleviates constraints that self-inhibition places on metabolism.
UR - http://www.scopus.com/inward/record.url?scp=85023208659&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85023208659&partnerID=8YFLogxK
U2 - 10.1038/ncomms16018
DO - 10.1038/ncomms16018
M3 - Article
C2 - 28691704
AN - SCOPUS:85023208659
SN - 2041-1723
VL - 8
JO - Nature Communications
JF - Nature Communications
M1 - 16018
ER -