Thermally induced oxygen related defects in eco-friendly ZnFe2O4 nanoparticles for enhanced wastewater treatment efficiencies

Basma Al-Najar, Adnan Younis, Layla Hazeem, Shama Sehar, Suad Rashdan, M. Nasiruzzaman Shaikh, Hanan Albuflasa, Nicholas P. Hankins

Research output: Contribution to journalArticlepeer-review

14 Citations (Scopus)


Herein, a simple but highly effective strategy of thermal annealing to modulate oxygen vacancies related defects in ZnFe2O4 (ZFO) nanoparticles for obtaining enhanced wastewater treatment efficiencies is reported. The as-prepared nanoparticles were thermally annealed at three different temperatures (500 °C, 600 °C and 700 °C) and their phase purity was confirmed by X-ray diffraction (XRD). All samples were found to exhibit pure phases of ZFO with different crystallite sizes ranging from 10 nm to 25 nm. The transmission electron microscope (TEM) images showed well dispersed nanoparticles and a strong correlation of grain size growth with annealing temperature was established. The optical absorption and emission characteristics were estimated through UV–visible and Photoluminescence (PL) spectroscopy. Raman spectroscopy and X-ray Photoelectron Spectroscopy (XPS) confirmed the variation of oxygen vacancies in the synthesized samples’ lattice. The photocatalytic activities of all samples were investigated and the highest efficiencies were recorded for the ZFO samples annealed at 500 °C. Under high salinity condition, the organic dye degradation efficiency of the same sample remained the highest among all. The excellent dye degradation abilities in ZFO samples can be attributed to the abundance of oxygen vacancies in the crystal lattice that slow down the recombination rate during the photocatalysis process. Moreover, cytotoxicity tests revealed that all prepared ZFO samples showed insignificant cell structure effects on Picochlorum sp microalgae, as verified by Fourier-transform infrared (FTIR) spectroscopy. On the other hand, no significant changes were detected on the viable cell concentration and Chlorophyll a content. This work presents a systematic way to finely tune the crystal sizes and to modulate oxygen related defects in ZFO through a highly effective annealing approach to signify their potential in industrial wastewater and seawater treatment processes.

Original languageEnglish
Article number132525
Publication statusPublished - Feb 2022
Externally publishedYes


  • Crystal size
  • Cytotoxicity
  • Dye mineralisation
  • Oxygen vacancies
  • Photocatalysis
  • Picochlorum sp

ASJC Scopus subject areas

  • Environmental Engineering
  • Environmental Chemistry
  • General Chemistry
  • Pollution
  • Public Health, Environmental and Occupational Health
  • Health, Toxicology and Mutagenesis


Dive into the research topics of 'Thermally induced oxygen related defects in eco-friendly ZnFe2O4 nanoparticles for enhanced wastewater treatment efficiencies'. Together they form a unique fingerprint.

Cite this