Thermo-hydraulic performance of heat sinks with microchannel embedded with pin-fins

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Citation (Scopus)

Abstract

In this work, an investigation of the heat sink performance employing sinusoidal microchannels embedded with pin fins was conducted. The effect of the sine wave frequency, the pin fins' diameter, and the hydraulic diameter of the microchannel are studied. The results are quantified in terms of thermal resistance and pressure drop. The study was done using Reynolds numbers varying from 250 to 2000. As Reynolds number increases, the heat sink's thermal resistance decreased while the pressure drop increased accordingly for all scenarios. The sinusoidal microchannels showed better performance – lower thermal resistance – but with the cost of higher pressure drop compared to the straight microchannel heat sink. The heat sink's performance was improved by increasing the frequency, diameter of pin fins, and hydraulic diameter; however, this reduction in thermal resistance was associated with an increase in pressure drop. The reduction in thermal resistance of the different configurations of the sinusoidal microchannels was between 17% and 69% compared to the straight microchannel heat sink.

Original languageEnglish
Title of host publicationProceedings of the ASME 2021 Heat Transfer Summer Conference, HT 2021
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791884874
DOIs
Publication statusPublished - 2021
EventASME 2021 Heat Transfer Summer Conference, HT 2021 - Virtual, Online
Duration: Jun 16 2021Jun 18 2021

Publication series

NameProceedings of the ASME 2021 Heat Transfer Summer Conference, HT 2021

Conference

ConferenceASME 2021 Heat Transfer Summer Conference, HT 2021
CityVirtual, Online
Period6/16/216/18/21

Keywords

  • Heat Sink
  • Pin Fins
  • Pressure Drop
  • Sinusoidal Microchannel
  • Thermal Resistance

ASJC Scopus subject areas

  • Mechanical Engineering
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Thermo-hydraulic performance of heat sinks with microchannel embedded with pin-fins'. Together they form a unique fingerprint.

Cite this