TY - GEN
T1 - Tidal instability in exoplanetary systems evolution
AU - Cébron, D.
AU - Moutou, C.
AU - Le Bars, M.
AU - Le Gal, P.
AU - Farès, R.
N1 - Publisher Copyright:
© 2011 Owned by the authors, published by EDP Sciences.
PY - 2011/2/16
Y1 - 2011/2/16
N2 - A new element is proposed to play a role in the evolution of extrasolar planetary systems: the tidal (or elliptical) instability. It comes from a parametric resonance and takes place in any rotating fluid whose streamlines are (even slightly) elliptically deformed. Based on theoretical, experimental and numerical works, we estimate the growth rate of the instability for hot-jupiter systems, when the rotation period of the star is known. We present the physical process, its application to stars, and preliminary results obtained on a few dozen systems, summarized in the form of a stability diagram. Most of the systems are trapped in the so-called "forbidden zone", where the instability cannot grow. In some systems, the tidal instability is able to grow, at short timescales compared to the system evolution. Implications are discussed in the framework of misaligned transiting systems, as the rotational axis of the star would be unstable in systems where this elliptical instability grows.
AB - A new element is proposed to play a role in the evolution of extrasolar planetary systems: the tidal (or elliptical) instability. It comes from a parametric resonance and takes place in any rotating fluid whose streamlines are (even slightly) elliptically deformed. Based on theoretical, experimental and numerical works, we estimate the growth rate of the instability for hot-jupiter systems, when the rotation period of the star is known. We present the physical process, its application to stars, and preliminary results obtained on a few dozen systems, summarized in the form of a stability diagram. Most of the systems are trapped in the so-called "forbidden zone", where the instability cannot grow. In some systems, the tidal instability is able to grow, at short timescales compared to the system evolution. Implications are discussed in the framework of misaligned transiting systems, as the rotational axis of the star would be unstable in systems where this elliptical instability grows.
UR - http://www.scopus.com/inward/record.url?scp=84921358302&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84921358302&partnerID=8YFLogxK
U2 - 10.1051/epjconf/20101103003
DO - 10.1051/epjconf/20101103003
M3 - Conference contribution
AN - SCOPUS:84921358302
T3 - EPJ Web of Conferences
BT - Detection and Dynamics of Transiting Exoplanets
A2 - Diaz, R.
A2 - Moutou, C.
A2 - Bouchy, F.
PB - EDP Sciences
T2 - 2010 International Conference on Transiting Planets: Detection and Dynamics
Y2 - 23 August 2010 through 27 August 2010
ER -