TY - JOUR
T1 - TiO2-enriched polymeric powder coatings support human mesenchymal cell spreading and osteogenic differentiation
AU - Mozumder, Mohammad Sayem
AU - Zhu, Jesse
AU - Perinpanayagam, Hiran
PY - 2011/6
Y1 - 2011/6
N2 - Novel polymeric powder coatings (PPC) were prepared by ultrafine powder coating technology and shown to support human mesenchymal cell attachment and growth. PPC surfaces enriched with nano-TiO2 (nTiO2) showed enhanced cellular responses, and were compared to commercially pure titanium (cpTi). After cell attachment and growth, osteogenic differentiation and bone matrix formation ensures osseointegration for implantable biomaterials. Therefore, the objective of this study was to determine if mesenchymal cells grown on PPC could undergo osteogenic differentiation by inducing Runx2 and bone matrix proteins, and then initiate mineralization. Atomic force microscopy revealed intricate three-dimensional micro-topographies, and the measures of nano-roughness and porosity were similar for all PPC surfaces. Scanning electron microscopy showed that the cells attached and spread out over all of the surfaces. After 1 week in osteogenic media, RT-PCR analysis showed the induction of Runx2, the up-regulation of type I collagen, and the initial detection of alkaline phosphatase and bone sialoprotein. After 4 weeks, Alizarin Red staining showed mineral deposition. However, cell spreading and osteogenic differentiation were significantly (P < 0.05) higher on the cpTi controls than on the PPC surfaces. Furthermore, spreading and differentiation were consistently higher on the titanium-enriched PPC-2, -3 and -4 than on the titanium-free PPC-1. Therefore, despite the presence of complex micro-topographies and nano-features, titanium-enrichment enhanced the cellular response, and pure titanium still provided the best substrate. These findings confirm the cytocompatibility of these novel polymeric coatings and suggest that titanium-enrichment and nTiO2 additives may enhance their performance.
AB - Novel polymeric powder coatings (PPC) were prepared by ultrafine powder coating technology and shown to support human mesenchymal cell attachment and growth. PPC surfaces enriched with nano-TiO2 (nTiO2) showed enhanced cellular responses, and were compared to commercially pure titanium (cpTi). After cell attachment and growth, osteogenic differentiation and bone matrix formation ensures osseointegration for implantable biomaterials. Therefore, the objective of this study was to determine if mesenchymal cells grown on PPC could undergo osteogenic differentiation by inducing Runx2 and bone matrix proteins, and then initiate mineralization. Atomic force microscopy revealed intricate three-dimensional micro-topographies, and the measures of nano-roughness and porosity were similar for all PPC surfaces. Scanning electron microscopy showed that the cells attached and spread out over all of the surfaces. After 1 week in osteogenic media, RT-PCR analysis showed the induction of Runx2, the up-regulation of type I collagen, and the initial detection of alkaline phosphatase and bone sialoprotein. After 4 weeks, Alizarin Red staining showed mineral deposition. However, cell spreading and osteogenic differentiation were significantly (P < 0.05) higher on the cpTi controls than on the PPC surfaces. Furthermore, spreading and differentiation were consistently higher on the titanium-enriched PPC-2, -3 and -4 than on the titanium-free PPC-1. Therefore, despite the presence of complex micro-topographies and nano-features, titanium-enrichment enhanced the cellular response, and pure titanium still provided the best substrate. These findings confirm the cytocompatibility of these novel polymeric coatings and suggest that titanium-enrichment and nTiO2 additives may enhance their performance.
UR - http://www.scopus.com/inward/record.url?scp=79960086064&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79960086064&partnerID=8YFLogxK
U2 - 10.1088/1748-6041/6/3/035009
DO - 10.1088/1748-6041/6/3/035009
M3 - Article
C2 - 21555842
AN - SCOPUS:79960086064
SN - 1748-6041
VL - 6
JO - Biomedical Materials
JF - Biomedical Materials
IS - 3
M1 - 035009
ER -