TY - JOUR
T1 - Transcriptome-Wide Analysis and Experimental Validation from FFPE Tissue Identifies Stage-Specific Gene Expression Profiles Differentiating Adenoma, Carcinoma In-Situ and Adenocarcinoma in Colorectal Cancer Progression
AU - Alhosani, Faisal
AU - Alhamidi, Reem Sami
AU - Ilce, Burcu Yener
AU - Altaie, Alaa Muayad
AU - Ali, Nival
AU - Hamad, Alaa Mohamed
AU - Künstner, Axel
AU - Khandanpour, Cyrus
AU - Busch, Hauke
AU - Al-Ramadi, Basel
AU - Harati, Rania
AU - Sayed, Kadria
AU - AlFazari, Ali
AU - Bendardaf, Riyad
AU - Hamoudi, Rifat
N1 - Publisher Copyright:
© 2025 by the authors.
PY - 2025/5
Y1 - 2025/5
N2 - Colorectal cancer (CRC) progression occurs through three stages: adenoma (pre-cancerous lesion), carcinoma in situ (CIS) and adenocarcinoma, with tumor stage playing a pivotal role in the prognosis and treatment outcomes. Despite therapeutic advancements, the lack of stage-specific biomarkers hinders the development of accurate diagnostic tools and effective therapeutic strategies. This study aims to identify stage-specific gene expression profiles and key molecular mechanisms in CRC providing insights into molecular alterations across disease progression. Our methodological approach integrates the use of absolute gene set enrichment analysis (absGSEA) on formalin-fixed paraffin-embedded (FFPE)-derived transcriptomic data, combined with large-scale clinical validation and experimental confirmation. A comparative whole transcriptomic analysis (RNA-seq) was performed on FFPE samples including adenoma (n = 10), carcinoma in situ (CIS) (n = 8) and adenocarcinoma (n = 11) samples. Using absGSEA, we identified significant cellular pathways and putative molecular biomarkers associated with each stage of CRC progression. Key findings were then validated in a large independent CRC patient cohort (n = 1926), with survival analysis conducted from 1336 patients to assess the prognostic relevance of the candidate biomarkers. The key differentially expressed genes were experimentally validated using real-time PCR (RT-qPCR). Pathway analysis revealed that in CIS, apoptotic processes and Wnt signaling pathways were more prominent than in adenoma samples, while in adenocarcinoma, transcriptional co-regulatory mechanisms and protein kinase activity, which are critical for tumor growth and metastasis, were significantly enriched compared to adenoma. Additionally, extracellular matrix organization pathways were significantly enriched in adenocarcinoma compared to CIS. Distinct gene signatures were identified across CRC stages that differentiate between adenoma, CIS and adenocarcinoma. In adenoma, ARRB1, CTBP1 and CTBP2 were overexpressed, suggesting their involvement in early tumorigenesis, whereas in CIS, RPS3A and COL4A5 were overexpressed, suggesting their involvement in the transition from benign to malignant stage. In adenocarcinoma, COL1A2, CEBPZ, MED10 and PAWR were overexpressed, suggesting their involvement in advanced disease progression. Functional analysis confirmed that ARRB1 and CTBP1/2 were associated with early tumor development, while COL1A2 and CEBPZ were involved in extracellular matrix remodeling and transcriptional regulation, respectively. Experimental validation with RT-qPCR confirmed the differential expression of the candidate biomarkers (ARRB1, RPS3A, COL4A5, COL1A2 and MED10) across the three CRC stages reinforcing their potential as stage-specific biomarkers in CRC progression. These findings provide a foundation to distinguish between the CRC stages and for the development of accurate stage-specific diagnostic and prognostic biomarkers, which helps in the development of more effective therapeutic strategies for CRC.
AB - Colorectal cancer (CRC) progression occurs through three stages: adenoma (pre-cancerous lesion), carcinoma in situ (CIS) and adenocarcinoma, with tumor stage playing a pivotal role in the prognosis and treatment outcomes. Despite therapeutic advancements, the lack of stage-specific biomarkers hinders the development of accurate diagnostic tools and effective therapeutic strategies. This study aims to identify stage-specific gene expression profiles and key molecular mechanisms in CRC providing insights into molecular alterations across disease progression. Our methodological approach integrates the use of absolute gene set enrichment analysis (absGSEA) on formalin-fixed paraffin-embedded (FFPE)-derived transcriptomic data, combined with large-scale clinical validation and experimental confirmation. A comparative whole transcriptomic analysis (RNA-seq) was performed on FFPE samples including adenoma (n = 10), carcinoma in situ (CIS) (n = 8) and adenocarcinoma (n = 11) samples. Using absGSEA, we identified significant cellular pathways and putative molecular biomarkers associated with each stage of CRC progression. Key findings were then validated in a large independent CRC patient cohort (n = 1926), with survival analysis conducted from 1336 patients to assess the prognostic relevance of the candidate biomarkers. The key differentially expressed genes were experimentally validated using real-time PCR (RT-qPCR). Pathway analysis revealed that in CIS, apoptotic processes and Wnt signaling pathways were more prominent than in adenoma samples, while in adenocarcinoma, transcriptional co-regulatory mechanisms and protein kinase activity, which are critical for tumor growth and metastasis, were significantly enriched compared to adenoma. Additionally, extracellular matrix organization pathways were significantly enriched in adenocarcinoma compared to CIS. Distinct gene signatures were identified across CRC stages that differentiate between adenoma, CIS and adenocarcinoma. In adenoma, ARRB1, CTBP1 and CTBP2 were overexpressed, suggesting their involvement in early tumorigenesis, whereas in CIS, RPS3A and COL4A5 were overexpressed, suggesting their involvement in the transition from benign to malignant stage. In adenocarcinoma, COL1A2, CEBPZ, MED10 and PAWR were overexpressed, suggesting their involvement in advanced disease progression. Functional analysis confirmed that ARRB1 and CTBP1/2 were associated with early tumor development, while COL1A2 and CEBPZ were involved in extracellular matrix remodeling and transcriptional regulation, respectively. Experimental validation with RT-qPCR confirmed the differential expression of the candidate biomarkers (ARRB1, RPS3A, COL4A5, COL1A2 and MED10) across the three CRC stages reinforcing their potential as stage-specific biomarkers in CRC progression. These findings provide a foundation to distinguish between the CRC stages and for the development of accurate stage-specific diagnostic and prognostic biomarkers, which helps in the development of more effective therapeutic strategies for CRC.
KW - GSEA
KW - adenocarcinoma
KW - adenoma
KW - biomarker discovery
KW - colorectal cancer (CRC)
KW - tumor immune microenvironment
UR - http://www.scopus.com/inward/record.url?scp=105005414658&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=105005414658&partnerID=8YFLogxK
U2 - 10.3390/ijms26094194
DO - 10.3390/ijms26094194
M3 - Article
C2 - 40362431
AN - SCOPUS:105005414658
SN - 1661-6596
VL - 26
JO - International journal of molecular sciences
JF - International journal of molecular sciences
IS - 9
M1 - 4194
ER -