TY - JOUR
T1 - Transference method for cone–like restricted summability of the two–dimensional walsh–like systems
AU - Nagy, Károly
AU - Salim, Mohamed
N1 - Funding Information:
Research supported by project UAEU UPAR 2017 Grant G00002599 ∗Corresponding author.
Publisher Copyright:
© 2021 Element D.O.O.. All rights reserved.
PY - 2021
Y1 - 2021
N2 - In the present paper we investigate the boundedness of the maximal operator of some d-dimensional means, provided that the set of the indeces is inside a cone-like set L. Applying some assumptions on the summation kernels Pn1,...,nd we state that the cone-like restricted maximal operator TCLRγ is bounded from the Hardy space Hpγ to the Lebesgue space Lp for p > p0 .
AB - In the present paper we investigate the boundedness of the maximal operator of some d-dimensional means, provided that the set of the indeces is inside a cone-like set L. Applying some assumptions on the summation kernels Pn1,...,nd we state that the cone-like restricted maximal operator TCLRγ is bounded from the Hardy space Hpγ to the Lebesgue space Lp for p > p0 .
KW - Almost everywhere convergence
KW - Cesàro means
KW - Group of 2-adic integers
KW - Hardy space
KW - Maximal operator
KW - Multidimensional system
KW - Restricted summability
KW - Walsh-Kaczmarz system
KW - Walsh-Paley system
UR - http://www.scopus.com/inward/record.url?scp=85103536234&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85103536234&partnerID=8YFLogxK
U2 - 10.7153/mia-2021-24-16
DO - 10.7153/mia-2021-24-16
M3 - Article
AN - SCOPUS:85103536234
SN - 1331-4343
VL - 24
SP - 219
EP - 234
JO - Mathematical Inequalities and Applications
JF - Mathematical Inequalities and Applications
IS - 1
ER -