TY - JOUR
T1 - Unravelling the genesis and depositional setting of Neoproterozoic banded iron formation from central Eastern Desert, Egypt
AU - Sami, Mabrouk
AU - Faisal, Mohamed
AU - Leybourne, Matthew
AU - Sanislav, Ioan V.
AU - Ahmed, Mohamed S.
AU - Lasheen, El Saeed R.
N1 - Publisher Copyright:
Copyright © 2024 Sami, Faisal, Leybourne, Sanislav, Ahmed and Lasheen.
PY - 2024
Y1 - 2024
N2 - The Neoproterozoic banded iron formations (BIFs) are widely occurred in the Egyptian Eastern Desert. This study integrates field observations, petrographic studies, geochemical data, and lead isotopes to construct the genesis and depositional environment of Wadi El-Mis hama BIF deposits. The iron layers, primarily of oxide facies within a volcano-sedimentary sequence, comprise magnetite-rich beds alternating with jaspilite or silicate laminae. The studied BIFs exhibit a dominant composition of SiO2 and Fe2O3t with relatively low contents of TiO2 and Al2O3. The positive correlation of REEs (La, Sm, Yb) with Zr and low concentrations of HFSEs (Ta, Nb, Th, Hf) indicate a primary formation mechanism of chemical precipitation, maintaining original geochemical signatures. Geochemical patterns show depletion in LREEs, enrichment in HREEs (La/YbPAAS = 0.08–0.12), and positive La anomalies (La/LaPAAS = 1.15–8.57), consistent with seawater influence. Additionally, various geochemical discrimination diagrams supported by elevated super-chondritic Y/Ho values (29.6–38.7), weak positive Eu anomalies, and low contents of transition metals (Cu and Zn), point to the interaction of low-temperature (<200°C) hydrothermal fluids (bearing Fe and Si) with seawater during the deposition of the BIFs. The lack of significant negative Ce anomalies along with low Ni/Co, U/Th, and Cu/Zn ratios, imply that the iron mineralization was precipitated from dysoxic to oxic conditions. The geochemical and Pb isotopic data suggest that the iron deposits formed in an extensional geodynamic setting (intra-oceanic arc basin environment) due to the subduction of the Mozambique Plate, with signatures closely matching other Precambrian Algoma-type BIFs.
AB - The Neoproterozoic banded iron formations (BIFs) are widely occurred in the Egyptian Eastern Desert. This study integrates field observations, petrographic studies, geochemical data, and lead isotopes to construct the genesis and depositional environment of Wadi El-Mis hama BIF deposits. The iron layers, primarily of oxide facies within a volcano-sedimentary sequence, comprise magnetite-rich beds alternating with jaspilite or silicate laminae. The studied BIFs exhibit a dominant composition of SiO2 and Fe2O3t with relatively low contents of TiO2 and Al2O3. The positive correlation of REEs (La, Sm, Yb) with Zr and low concentrations of HFSEs (Ta, Nb, Th, Hf) indicate a primary formation mechanism of chemical precipitation, maintaining original geochemical signatures. Geochemical patterns show depletion in LREEs, enrichment in HREEs (La/YbPAAS = 0.08–0.12), and positive La anomalies (La/LaPAAS = 1.15–8.57), consistent with seawater influence. Additionally, various geochemical discrimination diagrams supported by elevated super-chondritic Y/Ho values (29.6–38.7), weak positive Eu anomalies, and low contents of transition metals (Cu and Zn), point to the interaction of low-temperature (<200°C) hydrothermal fluids (bearing Fe and Si) with seawater during the deposition of the BIFs. The lack of significant negative Ce anomalies along with low Ni/Co, U/Th, and Cu/Zn ratios, imply that the iron mineralization was precipitated from dysoxic to oxic conditions. The geochemical and Pb isotopic data suggest that the iron deposits formed in an extensional geodynamic setting (intra-oceanic arc basin environment) due to the subduction of the Mozambique Plate, with signatures closely matching other Precambrian Algoma-type BIFs.
KW - Algoma-type
KW - back-arc basin
KW - banded iron formations
KW - Egyptian Eastern Desert
KW - Pb-isotopes
UR - http://www.scopus.com/inward/record.url?scp=85191858002&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85191858002&partnerID=8YFLogxK
U2 - 10.3389/feart.2024.1359617
DO - 10.3389/feart.2024.1359617
M3 - Article
AN - SCOPUS:85191858002
SN - 2296-6463
VL - 12
JO - Frontiers in Earth Science
JF - Frontiers in Earth Science
M1 - 1359617
ER -