TY - GEN
T1 - Use of Taguchi Method to Optimize the Mix Design of Pervious Geopolymer Concrete
AU - Anwar, Faiz Habib
AU - El-Mir, Abdulkader
AU - El-Hassan, Hilal
AU - Hamouda, Mohamed
AU - Mo, Kim Hung
N1 - Publisher Copyright:
© 2023, Avestia Publishing. All rights reserved.
PY - 2023
Y1 - 2023
N2 - The challenges related to the impervious pavement, including tire-pavement noise, urban heat island effect, and skid resistance, can be mitigated using pervious pavements. Instead of cement, Pervious geopolymer concrete (PGC) utilizes industrial wastes that would otherwise end up in landfills to produce an alkali-activated binder. This paper aims to optimize the mix design of PGC for superior mechanical performance using the Taguchi method. The binder consisted of a 3:1 blend of ground granulated blast furnace slag and fly ash. A total of nine PGC mixtures were designed, considering four factors, each at three levels, namely the binder content (400, 450, 500 kg/m3), dune sand addition (0, 10, 20%), alkaline activator solution-to-binder ratio (AAS/B, 0.55, 0.60, 0.65), and sodium hydroxide (SH) molarity (8, 10, 12). The signal-to-noise (S/N) ratios were determined to optimize the mixture proportions for superior mechanical performance, with compressive strength being the response criterion. Results showed that the optimum mix was made with a binder content of 500 kg/m3, dune sand addition of 20%, AAS/B of 0.60, and SH molarity of 12 M. Experimental research findings serve as a guide for optimizing the production of PGC with superior compressive strength while minimizing the number of experiments.
AB - The challenges related to the impervious pavement, including tire-pavement noise, urban heat island effect, and skid resistance, can be mitigated using pervious pavements. Instead of cement, Pervious geopolymer concrete (PGC) utilizes industrial wastes that would otherwise end up in landfills to produce an alkali-activated binder. This paper aims to optimize the mix design of PGC for superior mechanical performance using the Taguchi method. The binder consisted of a 3:1 blend of ground granulated blast furnace slag and fly ash. A total of nine PGC mixtures were designed, considering four factors, each at three levels, namely the binder content (400, 450, 500 kg/m3), dune sand addition (0, 10, 20%), alkaline activator solution-to-binder ratio (AAS/B, 0.55, 0.60, 0.65), and sodium hydroxide (SH) molarity (8, 10, 12). The signal-to-noise (S/N) ratios were determined to optimize the mixture proportions for superior mechanical performance, with compressive strength being the response criterion. Results showed that the optimum mix was made with a binder content of 500 kg/m3, dune sand addition of 20%, AAS/B of 0.60, and SH molarity of 12 M. Experimental research findings serve as a guide for optimizing the production of PGC with superior compressive strength while minimizing the number of experiments.
KW - Taguchi method
KW - compressive strength
KW - geopolymer
KW - pervious concrete
KW - sustainability
UR - http://www.scopus.com/inward/record.url?scp=85169102503&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85169102503&partnerID=8YFLogxK
U2 - 10.11159/iccste23.116
DO - 10.11159/iccste23.116
M3 - Conference contribution
AN - SCOPUS:85169102503
SN - 9781990800221
T3 - International Conference on Civil, Structural and Transportation Engineering
BT - Proceedings of the 8th International Conference on Civil, Structural and Transportation Engineering, ICCSTE 2023
PB - Avestia Publishing
T2 - 8th International Conference on Civil, Structural and Transportation Engineering, ICCSTE 2023
Y2 - 4 June 2023 through 6 June 2023
ER -