ViewSeeker: An Interactive View Recommendation Framework

Xiaozhong Zhang, Xiaoyu Ge, Panos K. Chrysanthis, Mohamed A. Sharaf

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

View recommendations have emerged as a powerful tool to assist data analysts in exploring and understanding big data. Existing view recommendation approaches proposed a variety of utility functions in selecting useful views. However, the suitability of the utility functions and their tunable parameters for an analysis is usually dependent on the analysis context, such as the user, the data and the analysis task. In order to provide context-aware view recommendation, we formulate a new Interactive View Recommendation (IVR) paradigm, where the system interacts with the user to discover the utility functions that are most suitable in the current analysis context. We further develop an IVR framework, coined ViewSeeker, which leverages user feedback on intelligently selected example views to discover the most suitable utility functions. Finally, we implemented a prototype of ViewSeeker and verified its efficiency and effectiveness using two real-world datasets.

Original languageEnglish
Article number100238
JournalBig Data Research
Volume25
DOIs
Publication statusPublished - Jul 15 2021

ASJC Scopus subject areas

  • Management Information Systems
  • Information Systems
  • Computer Science Applications
  • Information Systems and Management

Fingerprint

Dive into the research topics of 'ViewSeeker: An Interactive View Recommendation Framework'. Together they form a unique fingerprint.

Cite this