Abstract
With the emergence of AI for good, there has been an increasing interest in building computer vision data-driven deep learning inclusive AI solutions. Sign language Recognition (SLR) has gained attention recently. It is an essential component of a sign-to-text translation system to support the deaf and hard-of-hearing population. This paper presents a computer VISIOn data-driven deep learning framework for Sign Language video Recognition (VisoSLR). VisioSLR provides a precise measurement of translating signs for developing an end-to-end computational translation system. Considering the scarcity of sign language datasets, which hinders the development of an accurate recognition model, we evaluate the performance of our framework by fine-tuning the very well-known YOLO models, which are built from a signs-unrelated collection of images and videos, using a small-sized sign language dataset. Gathering a sign language dataset for signs training would involve an enormous amount of time to collect and annotate videos in different environmental setups and multiple signers, in addition to the training time of a model. Numerical evaluations of VisioSLR show that our framework recognizes signs with a mean average precision of 97.4%, 97.1%, and 95.5% and 11, 12, and 12 milliseconds of recognition time on YOLOv8m, YOLOv9m, and YOLOv11m, respectively.
Original language | English |
---|---|
Pages (from-to) | 85-92 |
Number of pages | 8 |
Journal | Procedia Computer Science |
Volume | 257 |
DOIs | |
Publication status | Published - 2025 |
Event | 16th International Conference on Ambient Systems, Networks and Technologies Networks, ANT 2025 / 8th International Conference on Emerging Data and Industry 4.0, EDI40 2025 - Patras, Greece Duration: Apr 22 2025 → Apr 24 2025 |
Keywords
- Artificial intelligence
- Computer vision
- Deep learning
- Fine-tuning
- Machine translation
- Neural machine translation
- Sign language
- Sign language recognition
- Transfer learning
- YOLO
ASJC Scopus subject areas
- General Computer Science