Water Harvesting at the Single-Crystal Level

Adrian Fuchs, Fabian Knechtel, Haoze Wang, Zhe Ji, Stefan Wuttke, Omar M. Yaghi, Evelyn Ploetz

Research output: Contribution to journalArticlepeer-review

25 Citations (Scopus)

Abstract

Metal-organic frameworks (MOFs) have emerged as a class of porous materials with facile uptake and release of water, turning them into excellent substrates for real-world atmospheric water harvesting applications. The performance of different MOF systems was experimentally characterized at the bulk level by assessing the total amount of water taken up and the release kinetics, leaving the question behind of what the upper limit of the pristine materials actually is. Moreover, recent devices rely on fluidized bed reactors that exploit the harvesting capacities of MOFs at the single-crystal (SC) level. In this publication, we present a novel methodology based on Raman spectroscopy, for acquiring water adsorption isotherms and kinetic curves with a sub-micrometer resolution that provides valuable insights into the material behavior probing the pristine MOF at the SC level. We investigated isolated MOF-801 particles in situ and could dissect contributions of intra- and inter-particle effects on the water harvesting performance of MOF-801 via adsorption-desorption isotherms and kinetic curves. Using spontaneous Raman spectroscopy, we found an almost 20-fold faster uptake for the undisturbed crystalline material. Correlative imaging based on four-wave mixing and coherent anti-Stokes Raman scattering further localized the uptaken water inside MOF-801 and identified inter-particle condensation as the main source for the discrepancies between the performance at the bulk and SC level. Our studies determined an upper limit of around 91.9 L/kgMOF/day for MOF-801.

Original languageEnglish
Pages (from-to)14324-14334
Number of pages11
JournalJournal of the American Chemical Society
Volume145
Issue number26
DOIs
Publication statusPublished - Jul 5 2023
Externally publishedYes

ASJC Scopus subject areas

  • Catalysis
  • General Chemistry
  • Biochemistry
  • Colloid and Surface Chemistry

Fingerprint

Dive into the research topics of 'Water Harvesting at the Single-Crystal Level'. Together they form a unique fingerprint.

Cite this