Which photo groups should i choose? A comparative study of recommendation algorithms in Flickr

Nan Zheng, Qiudan Li, Shengcai Liao, Leiming Zhang

Research output: Contribution to journalArticlepeer-review

63 Citations (Scopus)

Abstract

Over the last few years, the social media site Flickr has gained massive popularity. Besides traditional operations on photo sharing, Flickr also offers millions of groups for users to join in order to share photos with others, and the number of groups still increases daily. Choosing among so many options is challenging for users. As such, helping users easily find their desirable groups has become increasingly important. In this paper, we provide a systematic experimental evaluation of several collaborative filtering algorithms to recommend groups for Flickr users. In particular, we design and compare seven Flickr group recommendation models: three memory-based models and four model-based models. Our results suggest that model-based approaches are beneficial compared with memory-based approaches in terms of top-k recommendation metric. Models with tags perform well for sparse data, whereas models without tags are more suitable for dense data. Furthermore, incorporating tags in the recommendation algorithms leads to an improvement of precision on the top 2% performance.

Original languageEnglish
Pages (from-to)733-750
Number of pages18
JournalJournal of Information Science
Volume36
Issue number6
DOIs
Publication statusPublished - Dec 2010
Externally publishedYes

Keywords

  • collaborative filtering
  • Flickr group
  • recommender systems
  • social tagging systems

ASJC Scopus subject areas

  • Information Systems
  • Library and Information Sciences

Fingerprint

Dive into the research topics of 'Which photo groups should i choose? A comparative study of recommendation algorithms in Flickr'. Together they form a unique fingerprint.

Cite this