TY - GEN
T1 - ZAEBUC-Spoken
T2 - Joint 30th International Conference on Computational Linguistics and 14th International Conference on Language Resources and Evaluation, LREC-COLING 2024
AU - Hamed, Injy
AU - Eryani, Fadhl
AU - Palfreyman, David
AU - Habash, Nizar
N1 - Publisher Copyright:
© 2024 ELRA Language Resource Association: CC BY-NC 4.0.
PY - 2024
Y1 - 2024
N2 - We present ZAEBUC-Spoken, a multilingual multidialectal Arabic-English speech corpus. The corpus comprises twelve hours of Zoom meetings involving multiple speakers role-playing a work situation where Students brainstorm ideas for a certain topic and then discuss it with an Interlocutor. The meetings cover different topics and are divided into phases with different language setups. The corpus presents a challenging set for automatic speech recognition (ASR), including two languages (Arabic and English) with Arabic spoken in multiple variants (Modern Standard Arabic, Gulf Arabic, and Egyptian Arabic) and English used with various accents. Adding to the complexity of the corpus, there is also code-switching between these languages and dialects. As part of our work, we take inspiration from established sets of transcription guidelines to present a set of guidelines handling issues of conversational speech, code-switching and orthography of both languages. We further enrich the corpus with two layers of annotations; (1) dialectness level annotation for the portion of the corpus where mixing occurs between different variants of Arabic, and (2) automatic morphological annotations, including tokenization, lemmatization, and part-of-speech tagging.
AB - We present ZAEBUC-Spoken, a multilingual multidialectal Arabic-English speech corpus. The corpus comprises twelve hours of Zoom meetings involving multiple speakers role-playing a work situation where Students brainstorm ideas for a certain topic and then discuss it with an Interlocutor. The meetings cover different topics and are divided into phases with different language setups. The corpus presents a challenging set for automatic speech recognition (ASR), including two languages (Arabic and English) with Arabic spoken in multiple variants (Modern Standard Arabic, Gulf Arabic, and Egyptian Arabic) and English used with various accents. Adding to the complexity of the corpus, there is also code-switching between these languages and dialects. As part of our work, we take inspiration from established sets of transcription guidelines to present a set of guidelines handling issues of conversational speech, code-switching and orthography of both languages. We further enrich the corpus with two layers of annotations; (1) dialectness level annotation for the portion of the corpus where mixing occurs between different variants of Arabic, and (2) automatic morphological annotations, including tokenization, lemmatization, and part-of-speech tagging.
KW - Arabic
KW - Arabic Dialects
KW - Code-switching
KW - English
KW - Multilinguality
KW - Speech Corpus
UR - http://www.scopus.com/inward/record.url?scp=85195962730&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85195962730&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85195962730
T3 - 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation, LREC-COLING 2024 - Main Conference Proceedings
SP - 17770
EP - 17782
BT - 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation, LREC-COLING 2024 - Main Conference Proceedings
A2 - Calzolari, Nicoletta
A2 - Kan, Min-Yen
A2 - Hoste, Veronique
A2 - Lenci, Alessandro
A2 - Sakti, Sakriani
A2 - Xue, Nianwen
PB - European Language Resources Association (ELRA)
Y2 - 20 May 2024 through 25 May 2024
ER -